浏览全部资源
扫码关注微信
1. 四川师范大学物理与电子工程学院, 固体物理研究所低维结构物理实验室,四川 成都,610068
2. 重庆邮电大学, 光电工程学院 重庆,400065
纸质出版日期:2008-3-20,
收稿日期:2007-7-11,
修回日期:2007-9-23,
扫 描 看 全 文
陈青云, 段满益, 周海平, 董成军, 魏屹, 纪红萱, 黄劲松, 陈卫东, 徐明. Si/SiN<sub>x</sub>/SiO<sub>2</sub>多层膜的光致发光[J]. 发光学报, 2008,29(2): 363-370
CHEN Qing-yun, DUAN Man-yi, ZHOU Hai-ping, DONG Cheng-jun, WEI Yi, JI Hong-xuan, HUANG Jin-song, CHEN Wei-dong, XU Ming. Photoluminescence of Si/SiN<sub>x</sub>/SiO<sub>2</sub> Multilayers[J]. Chinese Journal of Luminescence, 2008,29(2): 363-370
陈青云, 段满益, 周海平, 董成军, 魏屹, 纪红萱, 黄劲松, 陈卫东, 徐明. Si/SiN<sub>x</sub>/SiO<sub>2</sub>多层膜的光致发光[J]. 发光学报, 2008,29(2): 363-370 DOI:
CHEN Qing-yun, DUAN Man-yi, ZHOU Hai-ping, DONG Cheng-jun, WEI Yi, JI Hong-xuan, HUANG Jin-song, CHEN Wei-dong, XU Ming. Photoluminescence of Si/SiN<sub>x</sub>/SiO<sub>2</sub> Multilayers[J]. Chinese Journal of Luminescence, 2008,29(2): 363-370 DOI:
采用射频磁控溅射法
制备了具有强光致可见发光的纳米Si/Si/SiN
x
/SiO
2
多层膜
利用傅立叶红外吸收(FTIR)谱
光致发光(PL)谱对其进行了研究。用260nm光激发得到的PL谱中观察到高强度的392nm(3.2eV)和670nm(1.9eV)光致发光峰
分析认为它们分别来自于缺陷态≡Si-到价带顶和从导带底到缺陷态≡Si-的辐射跃迁而产生的光致激发辐射复合发光。PL谱中只有370nm(3.4eV)处发光峰的峰位会受退火温度的影响
结合FTIR谱认为370nm发光与低价氧化物-SiOx(x
<
2. 0)结合体有密不可分的关系。当SiO
2
层的厚度增大时
发光强度有所增强
800℃退火后出现最强发光
认为具有较大SiO
2
层厚度的Si/Si/SiN
x
/SiO
2
结构多层膜更有利于退火后形成Si-N网络
能够得到更高效的光致发光。用量子限制-发光中心(QCLC)模型解释了可能的发光机制
并建立了发光的能隙态(EGS)模型。
Si/Si/SiN
x
/SiO
2
multilayers are prepared on Si(100) at room temperature by radio-frequency (RF) magnetron sputtering. The optical properties of these films have been investigated using Fourier Transform Infrared (FTIR) absorption and photoluminescence (PL) spectra
the origins of emission bands in PL spectra are discussed in detail. Strong photoluminescence at 392 nm(3.2 eV) and 670 nm (1.9 eV) is observed
which are caused by the electronic transitions of ≡Si
-
→
E
v
(the valence band top) and
E
c
( the conduction band bottom) →≡Si
-
. It is found that the stretching vibration peak of the Si-O bonds around 1 056 cm
-1
in FTIR spectra shifts toward to the lower wave numbers at a high annealing temperature. Accordingly
the PL peak at 370 nm depends upon the annealing temperature
it was suggested that the peak appeared at 370 nm can be related to the SiO
x
(x
<
2. 0)defect states level. The Si-N bonds will form again in the Si-rich environment. When the thickness of SiO
2
increases
the PL intensity of Si/Si/SiN
x
/SiO
2
multilayers increases. After annealing at 800℃
the strongest PL intensity appears. It was suggested that the bigger thickness of SiO
2
in Si/Si/SiN
x
/SiO
2
multilayers
the more beneficial of forming Si-N net in film
and the more effectively PL. The strong PL is relevant with the content of silicon dangling bond ≡Si
nitride dangling bond N
and oxygen-related defects. The quantum confinement-luminescence center (QCLC) model was adopted to interpret the PL results. The gap state model was built in order to explain the PL phenomenon.
Si/Si/SiNx/SiO2多层膜红外吸收光致发光
Si/Si/SiNx/SiO2 multilayersFourier transform infrared absorptionphotoluminescence
Canham L T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J].Appl.Phys.Lett.,1990,57(10):1046-1048.[2] Lin K C,Lee S C.The structural and optical properties of a-Si/SiNx:H prepared by plasma enhanced chemical-vapor deposition[J].J.Appl.Phys.,1992,72(11):5475-5482.[3] Iwayama T S,Nakao S,Saitoh K.Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si[J].Appl.Phys.Lett.,1994,65(14):1814-1816.[4] Lu Z H,Lockwood D J,Baribeau J M.Quantum confinement and light emission in SiO2/Si superlattices[J].Nature (London),1995,378(6554):258-260.[5] Xu M,Xu S,Huang S Y,et al.Growth and visible photoluminescence of SiCxNy/AlN nanoparticle superlattices[J].Physica E,2006,35:81-87.[6] Masuda A,Itoh K,Matsuda K,et al.Nitrogen-doping effects on electrical,optical,and structural properties in hydro-genated amorphous silicon[J].J.Appl.Phys.,1997,81(10):6729-6737.[7] Shi Mingji,Li Qingshan,Kong Xianggui.Structural and optical characteristics of nano-crystalline silicon films fabricated by pulsed laser deposition[J] Chin.J.Lumin.(发光学报),2006,27(6):681-686 (in Chinese).[8] Chen Chao,Liu Yuzhen,Zhang Guobin,et al.Photoluminescence of SiCN thin films prepared by C+ implantation into amorphous Si/SiNx:H[J].Chin.J.Lumin.(发光学报),2007,28(4):579-584 (in Chinese).[9] Hirschman K D,Tsybeskov L,Duttagupta S P,et al.Silicon-based visible light-emitting devices integrated into microelectronic circuits[J].Nature (London),1996,384(6607):338-341.[10] Pavesi L,Negro L D,Mazzoleni C,et al.Optical gain in silicon nanocrystals[J].Nature (London),2000,408(6811):440-444.[11] Serincan U,Kulakci M,Turan R,et al.Variation of photoluminescence from Si nanostructures in SiO2 matrix with Si+ post implantation[J].Nuclear Instruments and Methods in Physics Research B,2007,254(1):87-92.[12] Augustine B H,Hu Y Z,Irene E A,et al.An annealing study of luminescent amorphous silicon-rich silicon oxynitride thin films[J].Appl.Phys.Lett.,1995,67(25):3694-3696.[13] Mchedlidze T,Arguirov T,Kittler M,et al.Structural and optical properties of Si/SiO2 multi-quantum wells[J].Physica E,2007,38(1-2):152-155.[14] Chen K J,Ma Z Y,Huang X F,et al.Comparison between light emission from Si/Si/SiNx and Si/SiO2 multilayers:role of interface states[J].J.Non-Crystalline Solids,2004,338-340:448-451.[15] Modreanu M,Gartner M,Aperathitis E,et al.Investigation on preparation and physical properties of nanocrystalline Si/SiO2 superlattices for Si-based light-emitting devices[J].Physica E,2003,16(3-4):461-466.[16] Nihonyanagi S,Nishimoto K,Kanemitsu Y.Visible photoluminescence and quantum confinement effects in amorphous Si/SiO2 multilayer structures[J].J.Non-Crystalline Solids,Part 2,2002,299-302:1095-1099.[17] Yi L X,Scholz R,Zacharias M.Size and density control of Si-nanocrystals realized by SiOx/SiO2 superlattice[J].J.Lumin.,2007,122-123:750-752.[18] Xu M,Xu S,Ee Y C,et al.Visible photoluminescence from the annealed TEOS SiO2[J].Materials Science and Engineering B,2006,128(1-3):89-92.[19] Xu M,Xu S,Chai J W,et al.Enhancement of visible photoluminescence in the Si/SiNx films by SiO2 buffer and annealing[J].Appl.Phys.Lett.,2006,89(25):251904-1-3.[20] Aydmh A,Serpengfizel A,Vardar D.Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride[J].Solid State Communications,1996,98(4):273-274.[21] John G C,Singh V A.Theory of the photoluminescence spectra of porous silicon[J].Phys.Rev.B,1994,50(8):5329-5334.[22] Lockwood D J,Lu Z H,Baribeau J M.Quantum confined luminescence in Si/SiO2 superlattices[J].Phys.Rev.Lett.,1996,76(3):539-541.[23] Cullis A G,Canham L T,Calcott P D J.The structural and luminescence properties of porous silicon[J].J.Appl.Phys.,1997,82(3):909-965.[24] Kanemitsu Y,Okamoto S.Resonantly excited photoluminescence from porous silicon:Effects of surface oxidation on resonant luminescence spectra[J].Phys.Rev.B,1997,56(4):R1696-R1699.[25] Guha S,Pace M D,Dunn D N,et al.Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing[J].Appl.Phys.Lett.,1997,70(10):1207-1209.[26] Huo K,Ma Y,Hu Y,et al.Synthesis of single-crystalline a-Si3N4 nanobelts by extended vapour-liquid-solid growth[J].Nanotechnology,2005,16(10):2282-2287.[27] Zeng Youhua,Guo Hengqun,Wang Qiming.Preparation and photoluminescent properties of Si-rich silicon nitride thin films[J].Semiconductor Optoelectronics (半导体光电),2007,28(2):209-212 (in Chinese).[28] Yang X,Wu X L,Li S H,et al.Origin of the 370-nm luminescence in Si oxide nanostructures[J].Appl.Phys.Lett.,2005,86(20):201906-1-3.[29] Gritsenko V A,Zhuravlev K S,Milov A D,et al.Silicon dots/clusters in silicon:photoluminescence and electron spin resonance[J].Thin Solid Films,1999,353(1-2):20-24.[30] Kim T W,Cho C H,Kim B H,et al.Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3[J].Appl.Phys.Lett.,2006,88(12):123102-1-3.[31] Mo C,Zhang L,Xie C,et al.Luminescence of nanometer-sized amorphous silicon nitride solids[J].J.Appl.Phys.,1993,73(10):5185-5188.[32] Qin G G,Li Y J.Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide[J].Phys.Rev.B,2003,68(8):085309-1-7.[33] Brodsky M H.Quantum well model of hydrogenated amorphous silicon[J].Solid State Commun.,1980,36(1):55-59.[34] Ma L B,Song R,Miao Y M,et al.Blue-violet photoluminescence from amorphous Si-in-Si/SiNx thin films with external quantum efficiency in percentages[J].Appl.Phys.Lett.,2006,88(9):093102-1-3.[35] Robertson J.Electronic structure of silicon nitride[J].Philos.Mag.B,1991,63(1):47-77.
0
浏览量
70
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构