1.广东省晶体与激光技术工程研究中心, 广东 广州 510632
2.暨南大学理工学院 光电工程系, 广东 广州 510632
[ "谭慧瑜(1997-),女,广东开平人,硕士研究生,2020年于广东技术师范大学获得学士学位,主要从事激光与光电功能晶体材料的研究。 E-mail: thy@stu2020.jnu.edu.cn" ]
[ "张沛雄(1987-),男,广东潮州人,博士,副研究员,2016年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光与光电功能晶体材料的研究。" ]
扫 描 看 全 文
谭慧瑜, 张沛雄, 牛晓晨, 等. 可见光激光晶体Sm3+∶CaDyAlO4的光学性能[J]. 发光学报, 2022,43(11):1741-1749.
TAN Hui-yu, ZHANG Pei-xiong, NIU Xiao-chen, et al. Optical Properties of Visible Laser Crystal Sm3+∶CaDyAlO4[J]. Chinese Journal of Luminescence, 2022,43(11):1741-1749.
谭慧瑜, 张沛雄, 牛晓晨, 等. 可见光激光晶体Sm3+∶CaDyAlO4的光学性能[J]. 发光学报, 2022,43(11):1741-1749. DOI: 10.37188/CJL.20220164.
TAN Hui-yu, ZHANG Pei-xiong, NIU Xiao-chen, et al. Optical Properties of Visible Laser Crystal Sm3+∶CaDyAlO4[J]. Chinese Journal of Luminescence, 2022,43(11):1741-1749. DOI: 10.37188/CJL.20220164.
采用提拉法成功地生长了Sm,3+,掺杂CaDyAlO,4,晶体,并对其可见光光学性能进行研究,利用Judd‑Ofelt理论,得到强度参数、自发辐射概率及荧光分支比等重要的光谱性能参数。该晶体在353 nm处吸收峰最强,半高宽(FWHM)为13 nm,吸收截面为1.11×10,-20 ,cm,2,;在353 nm激发下,获得了500~650 nm的超宽带橙黄光发射,Dy,3+,离子和Sm,3+,离子的主要发射峰分别位于570 nm和620 nm处,发射截面分别为4.15×10,-20 ,cm,2,和4.03×10,-20 ,cm,2,。上述结果表明,Sm,3+,∶CaDyAlO,4,晶体可能是500~650 nm橙黄色调谐激光器的一种有前景的增益材料。
The Czochralski method was used to successfully grow the Sm,3+,-doped CaDyAlO,4, crystal, and its optical properties in visible light were investigated. Important spectral performance parameters such as intensity parameters, spontaneous emission probability, and fluorescence branching ratio were obtained using the Judd-Ofelt theory. The crystal has a strong absorption peak at 353 nm, a full width at half maximum(FWHM) of 13 nm, and an absorption cross section of 9.76×10,-20 ,cm,2,. When excited at 353 nm, an ultra-broadband orange-yellow emission from 500 nm to 650 nm is obtained, with Dy,3+, ions and Sm,3+, ions. The main emission peaks of Dy,3+, ions and Sm,3+, ions are at 570 nm and 620 nm, respectively, and the emission cross sections are 4.15×10,-20 ,cm,2, and 4.03×10,-20 ,cm,2,, respectively. The above findings suggest that Sm,3+,∶CaDyAlO,4, crystals could be a promising gain material for orange-yellow tunable lasers from 500 nm to 650 nm.
激光晶体Sm3+掺杂Judd-Ofelt理论橙黄光发射
laser crystalSm3+-dopedJudd-Ofelt theoryorange-yellow emission
HIGUCHI M, SASAKI R, TAKAHASHI J, et al. Float zone growth of Dy∶GdVO4 single crystals for potential use in solid-state yellow lasers [J]. J. Cryst. Growth, 2009, 311(21): 4549-4552. doi: 10.1016/j.jcrysgro.2009.08.028http://dx.doi.org/10.1016/j.jcrysgro.2009.08.028
XU B, LIU Z, XU H, et al. Highly efficient InGaN-LD-pumped bulk Pr∶YLF orange laser at 607 nm [J]. Opt. Commun., 2013, 305: 96-99. doi: 10.1016/j.optcom.2013.05.002http://dx.doi.org/10.1016/j.optcom.2013.05.002
STARECKI F, BOLAÑOS W, BRAUD A, et al. Red and orange Pr3+∶LiYF4 planar waveguide laser [J]. Opt. Lett., 2013, 38(4): 455-457. doi: 10.1364/ol.38.000455http://dx.doi.org/10.1364/ol.38.000455
CHOGE D K, CHEN H X, GUO L, et al. Double-pass high-efficiency sum-frequency generation of a broadband orange laser in a single MgO∶PPLN crystal [J]. Opt. Mater. Express, 2019, 9(2): 837-844. doi: 10.1364/ome.9.000837http://dx.doi.org/10.1364/ome.9.000837
CAVALLI E, BOVERO E, BELLETTI A, et al. Optical spectroscopy of CaMoO4∶Dy3+ single crystals [J]. J. Phys. Condens. Matter, 2002, 14(20): 5221-5228. doi: 10.1088/0953-8984/14/20/317http://dx.doi.org/10.1088/0953-8984/14/20/317
GRANADOS E, PASK H M, SPENCE D J, et al. Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm [J]. Opt. Express, 2009, 17(2): 569-574. doi: 10.1364/oe.17.000569http://dx.doi.org/10.1364/oe.17.000569
LIANG F, YANG J, ZHAO D G, et al. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1 000 h [J]. J. Semicond., 2019, 40(2): 022801-1-4. doi: 10.1088/1674-4926/40/2/022801http://dx.doi.org/10.1088/1674-4926/40/2/022801
WANG Z Y, WANG Y Q, SUN Y J, et al. Polarized spectral properties of Sm3+∶CaYAlO4 crystal [J]. Opt. Mater., 2021, 115: 111066-1-6. doi: 10.1016/j.optmat.2021.111066http://dx.doi.org/10.1016/j.optmat.2021.111066
熊建辉, 王昊宇, 杨晨乐, 等. K2LaBr5∶Pr晶体的生长及发光性能研究 [J]. 人工晶体学报, 2021, 50(8): 1402-1407.
XIONG J H, WANG H Y, YANG C L, et al. Growth and luminescence properties of K2LaBr5∶Pr crystal [J]. J. Synth. Cryst., 2021, 50(8): 1402-1407. (in Chinese)
赖昌, 王广川. YAlO3晶体中Pr3+的4f2能级 [J]. 发光学报, 2011, 32(9): 885-889. doi: 10.3788/fgxb20113209.0885http://dx.doi.org/10.3788/fgxb20113209.0885
LAI C, WANG G C. The 4f2 energy levels of Pr3+ doped YAlO3 crystal [J]. Chin. J. Lumin., 2011, 32(9): 885-889. (in Chinese). doi: 10.3788/fgxb20113209.0885http://dx.doi.org/10.3788/fgxb20113209.0885
时秋峰, 王磊, 郭海洁, 等. 真空紫外光及X射线激发下Pr3+掺杂Ba3La(PO4)3发光性质 [J]. 发光学报, 2021, 42(11): 1756-1762. doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
SHI Q F, WANG L, GUO H J, et al. Luminescence properties of Pr3+ doped in Ba3La(PO4)3 with vacuum ultraviolet and X-ray excitation [J]. Chin. J. Lumin., 2021, 42(11): 1756-1762. (in Chinese). doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
KAMINSKII A A. Laser crystals and ceramics: recent advances [J]. Laser Photonics Rev., 2007, 1(2): 93-177. doi: 10.1002/lpor.200710008http://dx.doi.org/10.1002/lpor.200710008
LIU W P, ZHANG Q L, SUN D L, et al. Crystal growth and spectral properties of Sm∶GGG crystal [J]. J. Cryst. Growth, 2011, 331(1): 83-86. doi: 10.1016/j.jcrysgro.2011.07.023http://dx.doi.org/10.1016/j.jcrysgro.2011.07.023
XU X D, HU Z W, LI R J, et al. Polarized spectral properties of Sm∶CaGdAlO4 crystal for reddish-orange laser [J]. Opt. Mater., 2017, 69: 333-338. doi: 10.1016/j.optmat.2017.04.046http://dx.doi.org/10.1016/j.optmat.2017.04.046
徐杰, 宋青松, 刘坚, 等. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能 [J]. 人工晶体学报, 2021, 50(7): 1391-1396. doi: 10.3969/j.issn.1000-985X.2021.07.020http://dx.doi.org/10.3969/j.issn.1000-985X.2021.07.020
XU J, SONG Q S, LIU J, et al. Growth and spectral properties of Sm3+-doped YAG and Y3ScAl4O12 single crystal fibers [J]. J. Synth. Cryst., 2021, 50(7): 1391-1396. (in Chinese). doi: 10.3969/j.issn.1000-985X.2021.07.020http://dx.doi.org/10.3969/j.issn.1000-985X.2021.07.020
KAZAKOV B N, ORLOV M S, PETROV M V, et al. Induced emission of Sm3+ ions in the visible region of the spectrum [J]. Opt. Spectrosc., 1979, 47(6): 676-677.
WANG Y Q, CHEN A X, TU C Y. Growth and polarized spectral properties of Sm3+ doped in Ca3La2(BO3)4 crystal [J]. Opt. Mater., 2015, 47: 561-565. doi: 10.1016/j.optmat.2015.06.043http://dx.doi.org/10.1016/j.optmat.2015.06.043
PUGH-THOMAS D. Spectroscopic properties and Judd‐Ofelt analysis of BaY2F8∶Sm3+ [J]. J. Opt. Soc. Am. B, 2014, 31(8): 1777-1785.
WANG G Q, LIN Y F, GONG X H, et al. Polarized spectral properties of Sm3+∶LiYF4 crystal [J]. J. Lumin., 2014, 147: 23-26. doi: 10.1016/j.jlumin.2013.10.058http://dx.doi.org/10.1016/j.jlumin.2013.10.058
LISIECKI R, RYBA-ROMANOWSKI W, SOLARZ P, et al. Effect of temperature on optical spectra and relaxation dynamics of Sm3+ in Gd3Ga5O12 single crystals [J]. J. Alloys Compd., 2014, 582: 208-212. doi: 10.1016/j.jallcom.2013.07.148http://dx.doi.org/10.1016/j.jallcom.2013.07.148
WOENSDREGT C F, JANSSEN H W M, GLOUBOKOV A, et al. Growth morphology of tetragonal ABCO4 compounds: theory and observations on Czochralski grown crystals [J]. J. Cryst. Growth, 1997, 171(3-4): 392-400. doi: 10.1016/s0022-0248(96)00700-2http://dx.doi.org/10.1016/s0022-0248(96)00700-2
PETIT J, GOLDNER P, VIANA B. Laser emission with low quantum defect in Yb∶CaGdAlO4 [J]. Opt. Lett., 2005, 30(11): 1345-1347. doi: 10.1364/ol.30.001345http://dx.doi.org/10.1364/ol.30.001345
SHANNON R D, OSWALD R A, PARISE J B, et al. Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4, and SrLaAlO4, and deviations from the oxide additivity rule [J]. J. Solid State Chem., 1992, 98(1): 90-98. doi: 10.1016/0022-4596(92)90073-5http://dx.doi.org/10.1016/0022-4596(92)90073-5
CHEN G X, GE Y J, BI C Z, et al. Far-infrared optical properties of SrLaAlO4 single crystal [J]. J. Appl. Phys., 2004, 95(7): 3417-3421. doi: 10.1063/1.1652253http://dx.doi.org/10.1063/1.1652253
BERKOWSKI M, PAJACZKOWSKA A, GIERL/OWSKI P, et al. CaNdAlO4 perovskite substrate for microwave and far-infrared applications of epitaxial high Tc superconducting thin films [J]. Appl. Phys. Lett., 1990, 57(6): 632-634. doi: 10.1063/1.104250http://dx.doi.org/10.1063/1.104250
SÉVILLANO P, GEORGES P, DRUON F, et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4 oscillator optically pumped by a bright fiber laser [J]. Opt. Lett., 2014, 39(20): 6001-6004. doi: 10.1364/ol.39.006001http://dx.doi.org/10.1364/ol.39.006001
TAN W D, TANG D Y, XU X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+∶CaYAlO4 laser [J]. Opt. Lett., 2011, 36(2): 259-261. doi: 10.1364/OL.36.000259http://dx.doi.org/10.1364/OL.36.000259
GUO F Y, XIE Q, QIU L Q, et al. Growth, magnetic and magneto-optical properties of CaDyAlO4 crystals [J]. Opt. Mater., 2021, 112: 110719-1-6. doi: 10.1016/j.optmat.2020.110719http://dx.doi.org/10.1016/j.optmat.2020.110719
BURTON J A, PRIM R C, SLICHTER W P, et al. The distribution of solute in crystals grown from the melt. Part I. Theoretical [J]. J. Chem. Phys., 1953, 21(11): 1987-1991. doi: 10.1063/1.1698728http://dx.doi.org/10.1063/1.1698728
LIU Q, XU J D, ZHANG P X, et al. Enhanced yellow emission of Sm3+ via Ce3+→ Sm3+ energy transfer in Gd0.1Y0.9AlO3 crystal [J]. J. Lumin., 2020, 227: 117533. doi: 10.1016/j.jlumin.2020.117533http://dx.doi.org/10.1016/j.jlumin.2020.117533
LIU J, SONG Q S, LI D Z, et al. Growth and red-orange emission of Sm3+ doped SrAl12O19 single crystals [J]. Opt. Mater., 2020, 101: 109754-1-5. doi: 10.1016/j.optmat.2020.109754http://dx.doi.org/10.1016/j.optmat.2020.109754
SHI J J, LIU B, WANG Q G, et al. Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy∶Lu2O3 for yellow laser [J]. Chin. Phys. B, 2018, 27(7): 077802-1-6. doi: 10.1088/1674-1056/27/7/077802http://dx.doi.org/10.1088/1674-1056/27/7/077802
PAN Y X, ZHOU S D, LI D Z, et al. Growth and optical properties of Dy∶Y3Al5O12 crystal [J]. Phys. B Condens. Matter, 2018, 530: 317-321. doi: 10.1016/j.physb.2017.12.001http://dx.doi.org/10.1016/j.physb.2017.12.001
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
KUSTOV E F, PETROV V P, PETROVA D S, et al. Absorption and luminescence spectra of Nd3± and Er3± ions in monocrystals of CaYAlO4 [J]. Phys. Status Solidi A, 1977, 41(2): 379-383. doi: 10.1002/pssa.2210410204http://dx.doi.org/10.1002/pssa.2210410204
WANG C, XIA H P, FENG Z G, et al. Infrared spectral properties for α-NaYF4 single crystal of various Er3+ doping concentrations [J]. Opt. Laser Technol., 2016, 82: 157-162. doi: 10.1016/j.optlastec.2016.03.012http://dx.doi.org/10.1016/j.optlastec.2016.03.012
LIU J, SONG Q S, LI D Z, et al. Crystal growth and spectroscopic characterization of Sm∶LaMgAl11O19 crystal [J]. J. Lumin., 2019, 215: 116701-1-6. doi: 10.1016/j.jlumin.2019.116701http://dx.doi.org/10.1016/j.jlumin.2019.116701
LIU B, WANG Q G, XU X D, et al. Polarized spectral properties of Sm∶YAlO3 single crystal for reddish-orange laser [J]. Opt. Mater., 2020, 99: 109510-1-5. doi: 10.1016/j.optmat.2019.109510http://dx.doi.org/10.1016/j.optmat.2019.109510
DI J Q, XU X D, XIA C T, et al. Crystal growth and optical properties of Sm∶CaNb2O6 single crystal [J]. J. Alloys Compd., 2012, 536: 20-25. doi: 10.1016/j.jallcom.2012.04.105http://dx.doi.org/10.1016/j.jallcom.2012.04.105
GHEORGHE C, HAU S, GHEORGHE L, et al. Optical properties of Sm3+ doped Ca3(Nb, Ga)5O12 and Ca3(Li, Nb, Ga)5O12 single crystals [J]. J. Lumin., 2017, 186: 175-182. doi: 10.1016/j.jallcom.2017.12.259http://dx.doi.org/10.1016/j.jallcom.2017.12.259
HE W Y, WANG X F, ZHENG J, et al. Optical property of Dy3+- and Ce3+ -doped Si-B-Na-Sr glasses [J]. J. Am. Ceram. Soc., 2014, 97(6): 1750-1755.
LIN H, PUN E Y B, MAN S Q, et al. Optical transitions and frequency upconversion of Er3+ ions in Na2O·Ca3Al2Ge3O12 glasses [J]. J. Opt. Soc. Am. B, 2001, 18(5): 602-609. doi: 10.1364/josab.18.000602http://dx.doi.org/10.1364/josab.18.000602
廖家裕, 陈鸿玲, 牛晓晨, 等. 新型中红外激光晶体Er3+/Ho3+/Eu3+∶PbF2的生长和性能 [J]. 发光学报, 2021, 42(12): 1852-1862. doi: 10.37188/cjl.20210312http://dx.doi.org/10.37188/cjl.20210312
LIAO J Y, CHEN H L, NIU X C, et al. Growth and properties of novel mid-infrared laser crystal Er3+/Ho3+/Eu3+∶PbF2 [J]. Chin. J. Lumin., 2021, 42(12): 1852-1862. (in Chinese). doi: 10.37188/cjl.20210312http://dx.doi.org/10.37188/cjl.20210312
BRIK M G, ISHII T, TKACHUK A M, et al. Calculations of the transitions intensities in the optical spectra of Dy3+∶LiYF4 [J]. J. Alloys Compd., 2004, 374(1-2): 63-68. doi: 10.1016/j.jallcom.2003.11.142http://dx.doi.org/10.1016/j.jallcom.2003.11.142
CAVALLI E, BETTINELLI M, BELLETTI A, et al. Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy3+ [J]. J. Alloys Compd., 2002, 341(1-2): 107-110. doi: 10.1016/s0925-8388(02)00079-8http://dx.doi.org/10.1016/s0925-8388(02)00079-8
LIU B, SHI J J, WANG Q G, et al. Crystal growth and yellow emission of Dy∶YAlO3 [J]. Opt. Mater., 2017, 72: 208-213. doi: 10.1016/j.optmat.2017.06.005http://dx.doi.org/10.1016/j.optmat.2017.06.005
BIGOTTA S, TONELLI M, CAVALLI E, et al. Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers [J]. J. Lumin., 2010, 130(1): 13-17. doi: 10.1016/j.jlumin.2009.05.008http://dx.doi.org/10.1016/j.jlumin.2009.05.008
XU R R, TIAN Y, HU L L, et al. Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses [J]. Opt. Lett., 2011, 36(7): 1173-1175. doi: 10.1364/ol.36.001173http://dx.doi.org/10.1364/ol.36.001173
0
浏览量
77
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构