浏览全部资源
扫码关注微信
大连海事大学 理学院, 辽宁 大连 116026
[ "白海斌(2000-),女,内蒙古通辽人,硕士研究生,2022年于大连民族大学获得学士学位,主要从事稀土发光材料的研究。 E-mail: haibinbai0889@163.com" ]
[ "张映辉(1962-),女,辽宁本溪人,学士,教授,硕士生导师,1984年于东北师范大学获得学士学位,主要从事大学物理和大学物理实验教育教学工作及无机发光材料的合成与光谱物理的研究。" ]
[ "陈宝玖(1970-),男,辽宁阜新人,博士,教授,博士生导师,1999年于中国科学院长春物理研究所获得博士学位,主要从事稀土掺杂发光材料的合成及光谱学性质的研究。 E-mail: bjchen@dlmu.edu.cn" ]
纸质出版日期:2023-10-05,
收稿日期:2023-07-14,
修回日期:2023-07-24,
扫 描 看 全 文
白海斌,陈昕,沙雪竹等.NaGd(MoO4)2∶Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J].发光学报,2023,44(10):1770-1778.
BAI Haibin,CHEN Xin,SHA Xuezhu,et al.Temperature- and Concentration-dependent Luminescence and Fluorescence Dynamic Temperature Sensing of NaGd(MoO4)2∶Tb3+ Phosphors[J].Chinese Journal of Luminescence,2023,44(10):1770-1778.
白海斌,陈昕,沙雪竹等.NaGd(MoO4)2∶Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J].发光学报,2023,44(10):1770-1778. DOI: 10.37188/CJL.20230165.
BAI Haibin,CHEN Xin,SHA Xuezhu,et al.Temperature- and Concentration-dependent Luminescence and Fluorescence Dynamic Temperature Sensing of NaGd(MoO4)2∶Tb3+ Phosphors[J].Chinese Journal of Luminescence,2023,44(10):1770-1778. DOI: 10.37188/CJL.20230165.
采用高温固相法制备了不同Tb
3+
掺杂浓度的NaGd(MoO
4
)
2
∶Tb
3+
荧光粉,XRD结果证实所制得样品为纯相。利用荧光光谱测量对该荧光粉的发光浓度猝灭进行了分析,证明荧光浓度猝灭是由Tb
3+
离子间的交换相互作用所导致,并符合浓度猝灭的Ozawa模型。采用Auzel提出的自产生猝灭模型对Tb
3+
的
5
D
4
能级荧光动力学进行了分析,结果表明该模型能够很好地解释荧光寿命对浓度的依赖关系。研究了Tb
3+
的
5
D
4
能级的发光强度和荧光寿命对样品温度的依赖关系,提出了利用荧光寿命进行温度传感的方法,并对温度传感的绝对和相对灵敏度进行了分析。
NaGd(MoO
4
)
2
∶Tb
3+
phosphors with different Tb
3+
concentrations were prepared by a high-temperature solid-state reaction method. The crystal structure analysis by means of X-ray diffraction (XRD) revealed that the samples prepared were pure-phased. Fluorescence spectroscopy measurements were utilized to investigate the phosphor's fluorescence quenching, and the results indicated that the fluorescence concentration quenching resulted from exchange interactions between Tb
3+
ions, and the Ozawa model held for the fluorescence quenching process. The self-generated quenching model proposed by Auzel was used to analyze the
5
D
4
level fluorescence dynamics of Tb
3+
, and it was found that the Auzel model can well explain the concentration dependence of fluorescence lifetime. The dependences of the luminescence intensity and lifetime of the
5
D
4
level of Tb
3+
on the sample temperature were investigated. A method for temperature sensing using the fluorescence lifetime was proposed, and the absolute and relative sensitivities of temperature sensing were analyzed.
高温固相法浓度猝灭荧光衰减热猝灭温度传感
solid-state reactionconcentration quenchingfluorescent decaythermal quenchingtemperature sensing
SHI Y H, ZHANG X Z, WANG X J, et al. Pure green upconversion from a multicolor downshifting perovskite crystal [J]. Adv. Opt. Mater., 2023, 11(10): 2202704. doi: 10.1002/adom.202202704http://dx.doi.org/10.1002/adom.202202704
TIAN S H, SHI Z G, SUN Y S, et al. Multicolor phosphate glasses for potential white LED lighting and X-ray detections [J]. Laser Photonics Rev., 2022, 16(9): 2200020. doi: 10.1002/lpor.202200020http://dx.doi.org/10.1002/lpor.202200020
ZHANG Y H, CHEN B J, ZHANG X Z, et al. Sn2+/Mn2+ co-doped germanate glass with quasi-sunlight spectrum visible-emission and its high-quality w-LED application [J]. Chem. Eng. J., 2023, 467: 143467. doi: 10.1016/j.cej.2023.143467http://dx.doi.org/10.1016/j.cej.2023.143467
LI Y, CHEN C, JIN M, et al. External-field-dependent tunable emissions of Er3+-In3+ co-doped Cs2AgBiCl6 for applications in anti-counterfeiting [J]. Mater. Today Phys., 2022, 27: 100830. doi: 10.1016/j.mtphys.2022.100830http://dx.doi.org/10.1016/j.mtphys.2022.100830
陈宝玖, 陈昕, 王礼, 等. 用于防伪标签的发光材料研究进展(特邀) [J]. 光子学报, 2022, 51(8): 0851504-1-14. doi: 10.3788/gzxb20225108.0851504http://dx.doi.org/10.3788/gzxb20225108.0851504
CHEN B J, CHEN X, WANG L, et al. Progress in luminescent materials for anti-counterfeiting labels (Invited) [J]. Acta Photon. Sinica, 2022, 51(8): 0851504-1-14. (in Chinese). doi: 10.3788/gzxb20225108.0851504http://dx.doi.org/10.3788/gzxb20225108.0851504
WU Y J, ZHAO X Q, ZHANG Z Y, et al. Dual-mode dichromatic SrBi4Ti4O15∶Er3+ emitting phosphor for anti-counterfeiting application [J]. Ceram. Int., 2021, 47(11): 15067-15072. doi: 10.1016/j.ceramint.2021.02.064http://dx.doi.org/10.1016/j.ceramint.2021.02.064
RAO Z H, LI Q Q, LI Z L, et al. Ultra-high-sensitive temperature sensing based on Er3+ and Yb3+ co-doped lead-free double perovskite microcrystals [J]. J. Phys. Chem. Lett., 2022, 13(16): 3623-3630. doi: 10.1021/acs.jpclett.2c00744http://dx.doi.org/10.1021/acs.jpclett.2c00744
YAO W J, TIAN Q Y, LIU J, et al. Preparation and RGB upconversion optic properties of transparent anti-counterfeiting films [J]. Nanoscale, 2017, 9(41): 15982-15989. doi: 10.1039/c7nr05744jhttp://dx.doi.org/10.1039/c7nr05744j
LIU X H, SHAO H, LI N, et al. Electrospun green-emitting La2O2CO3∶Tb3+ nanofibers and La2O2CO3∶Tb3+/Eu3+ nanofibers with white-light emission and color-tuned photoluminescence [J]. J. Colloid Interface Sci., 2023, 646: 711-720. doi: 10.1016/j.jcis.2023.05.116http://dx.doi.org/10.1016/j.jcis.2023.05.116
NI Z, LIU M X, LI B, et al. Room-temperature, ultrafast, and aqueous-phase synthesis of ultrasmall LaPO4∶Ce3+, Tb3+ nanoparticles with a photoluminescence quantum yield of 74% [J]. Inorg. Chem., 2023, 62(11): 4727-4734.
WANG J Q, LI Y H, LI X T, et al. Energy transfer mechanism of carboxymethyl chitosan-Eu3+/Tb3+ complex materials and application in multicolor LED [J]. Carbohydr. Polym., 2023, 315: 120981. doi: 10.1016/j.carbpol.2023.120981http://dx.doi.org/10.1016/j.carbpol.2023.120981
XIE Y, SUN G T, MANDL G A, et al. Upconversion luminescence through cooperative and energy-transfer mechanisms in Yb3+-metal-organic frameworks [J]. Angew. Chem., Int. Ed., 2023, 62(4): e202216269. doi: 10.1002/anie.202216269http://dx.doi.org/10.1002/anie.202216269
REN Y T, YANG Z W, LI M J, et al. Reversible upconversion Luminescence modification based on photochromism in BaMgSiO4∶Yb3+, Tb3+ ceramics for anti-counterfeiting applications [J]. Adv. Opt. Mater., 2019, 7(15): 1900213. doi: 10.1002/adom.201900213http://dx.doi.org/10.1002/adom.201900213
LEE T J, LUO L Y, DIAU E W G, et al. Visible quantum cutting through downconversion in green-emitting K2GdF5∶Tb3+ phosphors [J]. Appl. Phys. Lett., 2006, 89(13): 131121. doi: 10.1063/1.2358193http://dx.doi.org/10.1063/1.2358193
DUAN Q Q, QIN F, WANG D, et al. Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass [J]. J. Appl. Phys., 2011, 110(11): 113503. doi: 10.1063/1.3662916http://dx.doi.org/10.1063/1.3662916
MISHRA N K, SHWETABH K, GAUTAM U K, et al. Probing multimodal light emission from Tb3+/Yb3+-doped garnet nanophosphors for lighting applications [J]. Phys. Chem. Chem. Phys., 2023, 25(16): 11756-11770. doi: 10.1039/d3cp00265ahttp://dx.doi.org/10.1039/d3cp00265a
张艳秋. 稀土掺杂钨酸钆和NaYF4上转换材料的发光性质与应用探索 [D]. 大连: 大连海事大学, 2020.
ZHANG Y Q. Luminescence Properties and Application Study of Rare Earth Doped Gadolinium Tungstate and NaYF4 Upconversion Materials [D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
SHA X Z, CHEN B J, ZHANG X Z, et al. Pre-assessments of optical transition, gain performance and temperature sensing of Er3+ in NaLn(MoO4)2 (Ln = Y, La, Gd and Lu) single crystals by using their powder-formed samples derived from traditional solid state reaction [J]. Opt. Laser Technol., 2021, 140: 107012. doi: 10.1016/j.optlastec.2021.107012http://dx.doi.org/10.1016/j.optlastec.2021.107012
ZHENG H, CHEN B J, YU H Q, et al. Rod-shaped NaY(MoO4)2∶Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density [J]. Sens. Actuators B: Chem., 2016, 234: 286-293. doi: 10.1016/j.snb.2016.04.162http://dx.doi.org/10.1016/j.snb.2016.04.162
JIANG Y Y, LIU Y, LIU G X, et al. Surfactant-assisted hydrothermal synthesis of octahedral structured NaGd(MoO4)2∶Eu3+/Tb3+ and tunable photoluminescent properties [J]. Opt. Mater., 2014, 36(11): 1865-1870. doi: 10.1016/j.optmat.2014.03.043http://dx.doi.org/10.1016/j.optmat.2014.03.043
LIAO C L, CAO R P, WANG W D, et al. Photoluminescence properties and energy transfer of NaY(MoO4)2∶R (R = Sm3+/Bi3+, Tb3+/Bi3+, Sm3+/Tb3+) phosphors [J]. Mater. Res. Bull., 2018, 97: 490-496.
HANUZA J, MACALIK L. Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4), single crystals (Ln = Sm-Lu, Y) [J]. Spectrochim. Acta A⁃Mol. Biomol. Spectrosc., 1987, 43(3): 361-373. doi: 10.1016/0584-8539(87)80118-6http://dx.doi.org/10.1016/0584-8539(87)80118-6
MACALIK L, HANUZA J, KAMINSKII A A. Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals [J]. J. Mol. Struct., 2000, 555(1-3): 289-297. doi: 10.1016/s0022-2860(00)00612-8http://dx.doi.org/10.1016/s0022-2860(00)00612-8
TIAN B N, CHEN B J, TIAN Y, et al. Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21∶Eu3+ phosphors [J]. J. Mater. Chem. C, 2013, 1(12): 2338-2344. doi: 10.1039/c3tc00915ghttp://dx.doi.org/10.1039/c3tc00915g
VAN UITERT L G. Characterization of energy transfer interactions between rare earths ions [J]. J. Electrochem. Soc., 1967, 114(10): 1048-1053. doi: 10.1149/1.2424184http://dx.doi.org/10.1149/1.2424184
OZAWA L. Determination of self-concentration quenching mechanisms of rare earth luminescence from intensity measurements on powdered phosphor screens [J]. J. Electrochem. Soc., 1979, 126(1): 106-109. doi: 10.1149/1.2128962http://dx.doi.org/10.1149/1.2128962
INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989. doi: 10.1063/1.1697063http://dx.doi.org/10.1063/1.1697063
AUZEL F. A fundamental self-generated quenching center for lanthanide-doped high-purity solids [J]. J. Lumin., 2002, 100(1-4): 125-130. doi: 10.1016/s0022-2313(02)00457-xhttp://dx.doi.org/10.1016/s0022-2313(02)00457-x
TIAN Y, CHEN B J, HUA R N, et al. Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3∶Eu3+ phosphor [J]. J. Appl. Phys., 2011, 109(5): 053511. doi: 10.1063/1.3551584http://dx.doi.org/10.1063/1.3551584
DENG H J, XUE N, HEI Z F, et al. Close-relationship between the luminescence and structural characteristics in efficient nano-phosphor Y2Mo4O15∶Eu3+ [J]. Opt. Mater. Express, 2015, 5(3): 490-496. doi: 10.1364/ome.5.000490http://dx.doi.org/10.1364/ome.5.000490
WEI J M, WEI H, JI S M, et al. Temperature sensing behavior in Yb3+-Tb3+ and Eu3+ doped Ca2Gd8(SiO4)6O2 phosphors based on upconversion and downshifting luminescence [J]. J. Mater. Sci.: Mater. Electron., 2018, 29(14): 12061-12066. doi: 10.1007/s10854-018-9312-9http://dx.doi.org/10.1007/s10854-018-9312-9
XIA W D, LI L, YANG P X, et al. Synthesis of color-tunable Sr8MgLa(PO4)7∶Eu3+/Tb3+ phosphors for designing dual-model thermometers [J]. J. Lumin., 2021, 239: 118383. doi: 10.1016/j.jlumin.2021.118383http://dx.doi.org/10.1016/j.jlumin.2021.118383
LAPAEV D V, NIKIFOROV V G, LOBKOV V S, et al. A photostable vitrified film based on a terbium (Ⅲ) β-diketonate complex as a sensing element for reusable luminescent thermometers [J]. J. Mater. Chem. C, 2018, 6(35): 9475-9481. doi: 10.1039/c8tc01288ahttp://dx.doi.org/10.1039/c8tc01288a
0
浏览量
128
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构