浏览全部资源
扫码关注微信
1.泉州师范学院物理与信息工程学院 福建省先进微纳光子技术与器件重点实验室, 福建 泉州 362000
2.福州大学 先进制造学院, 福建 泉州 362200
3.福建师范大学 光电与信息工程学院, 福建 福州 350117
[ "姚广平(1989-),男,福建泉州人,硕士,实验师,2016年于福建师范大学获得硕士学位,主要从事有机光电材料与器件、电子技术的研究。 E-mail: 375130413@qq.com" ]
[ "苏子生(1981-),男,福建闽清人,博士,教授,2009年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事有机光电材料与器件的研究。 E-mail: suzs@qztc.edu.cn" ]
纸质出版日期:2023-11-05,
收稿日期:2023-08-30,
修回日期:2023-09-14,
扫 描 看 全 文
姚广平,文超,刘佳澎等.缺陷对全无机钙钛矿太阳能电池性能的影响[J].发光学报,2023,44(11):2033-2040.
YAO Guangping,WEN Chao,LIU Jiapeng,et al.Effect of Defects on Performance of All Inorganic Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(11):2033-2040.
姚广平,文超,刘佳澎等.缺陷对全无机钙钛矿太阳能电池性能的影响[J].发光学报,2023,44(11):2033-2040. DOI: 10.37188/CJL.20230196.
YAO Guangping,WEN Chao,LIU Jiapeng,et al.Effect of Defects on Performance of All Inorganic Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(11):2033-2040. DOI: 10.37188/CJL.20230196.
利用一维太阳能电池仿真软件SCAPS对全无机钙钛矿太阳能电池中缺陷对器件性能的影响进行了研究。研究表明,在ITO/SnO
2
/CsPbI
3
/CuI/Au电池中,CuI/CsPbI
3
界面和CsPbI
3
光活性层缺陷密度对器件的性能具有较大影响。随着缺陷密度增大,器件的开路电压、短路电流、填充因子和光电转化效率均减小,尤其是当缺陷密度大于10
15
cm
-3
后,器件性能显著下降。相反地,CsPbI
3
/SnO
2
界面缺陷对器件性能无显著影响。通过优化器件的缺陷密度、光活性层的厚度和受主掺杂浓度,全无机钙钛矿太阳能电池的光电转化效率可以达到20%以上。
The effects of defects on the performance of all inorganic perovskite solar cells was studied using a one-dimensional solar cell simulation software SCAPS. It is found that in the device ITO/SnO
2
/CsPbI
3
/CuI/Au, the density of the defects at the CuI/CsPbI
3
interface and in the CsPbI
3
photoactive layer has dramatically influence on the performance of the device. With the increase of the defect density, the open-circuit voltage, short-circuit current, filling factor, and power conversion efficiency of the device all decrease, especially when the defect density exceeds 10
15
cm
-3
. On the contrary, the defects at the CsPbI
3
/SnO
2
interface have almost no effect on device performance. By optimizing the defect density of the device, the thickness and doping concentration of the photoactive layer, a power conversion efficiency higher than 20% can be obtained in the all inorganic perovskite solar cells.
钙钛矿太阳能电池全无机缺陷仿真
perovskite solar cellall inorganicdefectsimulation
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
ZHAO Y, MA F, QU Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells [J]. Science, 2022, 377(6605): 531-534. doi: 10.1126/science.abp8873http://dx.doi.org/10.1126/science.abp8873
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management [J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-whttp://dx.doi.org/10.1038/s41586-021-03285-w
JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592(7854): 381-385. doi: 10.1038/s41586-021-03406-5http://dx.doi.org/10.1038/s41586-021-03406-5
LI Z, LI B, WU X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells [J]. Science, 2022, 376(6591): 416-420. doi: 10.1126/science.abm8566http://dx.doi.org/10.1126/science.abm8566
MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8http://dx.doi.org/10.1038/s41586-021-03964-8
JIANG Q, TONG J H, XIAN Y M, et al. Surface reaction for efficient and stable inverted perovskite solar cells [J]. Nature, 2022, 611(7935): 278-283. doi: 10.1038/s41586-022-05268-xhttp://dx.doi.org/10.1038/s41586-022-05268-x
NREL. Interactive best research-cell efficiency chart [EB/OL]. [2023-08-15]. https://www.nrel.gov/pv/interactive-cell-efficiency.htmlhttps://www.nrel.gov/pv/interactive-cell-efficiency.html. doi: 10.2172/6700http://dx.doi.org/10.2172/6700
WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability [J]. Adv. Funct. Mater., 2019, 29(47): 1808843. doi: 10.1002/adfm.201808843http://dx.doi.org/10.1002/adfm.201808843
NAZIR G, LEE S Y, LEE J H, et al. Stabilization of perovskite solar cells: recent developments and future perspectives [J]. Adv. Mater., 2022, 34(50): 2204380. doi: 10.1002/adma.202204380http://dx.doi.org/10.1002/adma.202204380
刘鲲鹏, 刘德烨, 刘凤敏. 全无机钙钛矿太阳能电池湿度稳定性和光热稳定性研究进展 [J]. 发光学报, 2021, 42(4): 486-503. doi: 10.37188/CJL.20200343http://dx.doi.org/10.37188/CJL.20200343
LIU K P, LIU D Y, LIU F M. Research progress in humidity stability and light-thermal stability of all-inorganic perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(4): 486-503. (in Chinese). doi: 10.37188/CJL.20200343http://dx.doi.org/10.37188/CJL.20200343
EPERON G E, PATERNÒ G M, SUTTON R J, et al. Inorganic caesium lead iodide perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(39): 19688-19695. doi: 10.1039/c5ta06398ahttp://dx.doi.org/10.1039/c5ta06398a
TAN S, TAN C Y, CUI Y Q, et al. Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules [J]. Adv. Mater., 2023, 35(28): 2301879. doi: 10.1002/adma.202301879http://dx.doi.org/10.1002/adma.202301879
MALI S S, PATIL J V, SHAO J Y, et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency [J]. Nat. Energy, 2023, 8(9): 989-1001. doi: 10.1038/s41560-023-01310-yhttp://dx.doi.org/10.1038/s41560-023-01310-y
HAWASH Z, ONO L K, RAGA S R, et al. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-meOTAD films [J]. Chem. Mater., 2015, 27(2): 562-569. doi: 10.1021/cm504022qhttp://dx.doi.org/10.1021/cm504022q
LIU X, ZHENG B L, SHI L, et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive [J]. Nat. Photonics, 2023, 17(1): 96-105. doi: 10.1038/s41566-022-01111-xhttp://dx.doi.org/10.1038/s41566-022-01111-x
PENG Y, YAACOBI-GROSS N, PERUMAL A K, et al. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers [J]. Appl. Phys. Lett., 2015, 106(24): 243302. doi: 10.1063/1.4922758http://dx.doi.org/10.1063/1.4922758
CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide [J]. J. Am. Chem. Soc., 2014, 136(2): 758-764. doi: 10.1021/ja411014khttp://dx.doi.org/10.1021/ja411014k
ZHANG J X, ZHANG G Z, SU P Y, et al. 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells [J]. Angew. Chem. Int. Ed., 2023, 62(25): e202303486. doi: 10.1002/anie.202303486http://dx.doi.org/10.1002/anie.202303486
CHEN W T, ZHANG S S, LIU Z H, et al. A tailored nickel oxide hole-transporting layer to improve the long-term thermal stability of inorganic perovskite solar cells [J]. Sol. RRL, 2019, 3(11): 1900346. doi: 10.1002/solr.201900346http://dx.doi.org/10.1002/solr.201900346
LIN L Y, JIANG L Q, LI P, et al. Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells [J]. Sol. Energy, 2020, 198: 454-460. doi: 10.1016/j.solener.2020.01.081http://dx.doi.org/10.1016/j.solener.2020.01.081
SHEN H, LI X K, ZHANG X, et al. Constructing gradient structure to increase efficiency for carbon-based hole transport layer free all-inorganic perovskite solar cells using SCAPS-1D [J]. Sol. Energy, 2023, 253: 240-249. doi: 10.1016/j.solener.2023.02.037http://dx.doi.org/10.1016/j.solener.2023.02.037
BANSAL N K, PORWAL S, DIXIT H, et al. A theoretical study to investigate the impact of bilayer interfacial modification in perovskite solar cell [J]. Energy Technol., 2023, 11(4): 2201395. doi: 10.1002/ente.202201395http://dx.doi.org/10.1002/ente.202201395
ISLAM M A, AKHTARUZZAMAN M, MOTTAKIN M, et al. Potential-induced performance degradation (PID) applied on a perovskite solar cell: exploring its effect on cell performance through numerical simulation [J]. J. Electron. Mater., 2023, 52(5): 3205-3218. doi: 10.1007/s11664-023-10284-2http://dx.doi.org/10.1007/s11664-023-10284-2
QIN Z W, ZHOU H, LI S T, et al. CsPbI3 based all-inorganic perovskite solar cells: further performance enhancement of the electron transport layer-free structure from device simulation [J]. Adv. Theory Simul., 2023, 6(8): 2200805. doi: 10.1002/adts.202200805http://dx.doi.org/10.1002/adts.202200805
HUANG Y, YIN W J, HE Y. Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3 [J]. J. Phys. Chem. C, 2018, 122(2): 1345-1350. doi: 10.1021/acs.jpcc.7b10045http://dx.doi.org/10.1021/acs.jpcc.7b10045
BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells [J]. Thin Solid Films, 2000, 361-362: 527-532. doi: 10.1016/s0040-6090(99)00825-1http://dx.doi.org/10.1016/s0040-6090(99)00825-1
DENG Q R, LI Y Q, CHEN L A, et al. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells [J]. Mod. Phys. Lett. B, 2016, 30(27): 1650341. doi: 10.1142/s0217984916503413http://dx.doi.org/10.1142/s0217984916503413
AZRI F, MEFTAH A, SENGOUGA N, et al. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell [J]. Sol. Energy, 2019, 181: 372-378. doi: 10.1016/j.solener.2019.02.017http://dx.doi.org/10.1016/j.solener.2019.02.017
DASTIDAR S, LI S M, SMOLIN S Y, et al. Slow electron-hole recombination in lead iodide perovskites does not require a molecular dipole [J]. ACS Energy Lett., 2017, 2(10): 2239-2244. doi: 10.1021/acsenergylett.7b00606http://dx.doi.org/10.1021/acsenergylett.7b00606
WANG P Y, ZHANG X W, ZHOU Y Q, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells [J]. Nat. Commun., 2018, 9(1): 2225. doi: 10.1038/s41467-018-04636-4http://dx.doi.org/10.1038/s41467-018-04636-4
HUTTER E M, SAVENIJE T J. Thermally activated second-order recombination hints toward indirect recombination in fully inorganic CsPbI3 perovskites [J]. ACS Energy Lett., 2018, 3(9): 2068-2069. doi: 10.1021/acsenergylett.8b01106http://dx.doi.org/10.1021/acsenergylett.8b01106
HOSSAIN M I, ALHARBI F H, TABET N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells [J]. Sol. Energy, 2015, 120: 370-380. doi: 10.1016/j.solener.2015.07.040http://dx.doi.org/10.1016/j.solener.2015.07.040
KANOUN A A, KANOUN M B, MERAD A E, et al. Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach [J]. Sol. Energy, 2019, 182: 237-244. doi: 10.1016/j.solener.2019.02.041http://dx.doi.org/10.1016/j.solener.2019.02.041
HU Y Q, BAI F, LIU X B, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells [J]. ACS Energy Lett., 2017, 2(10): 2219-2227. doi: 10.1021/acsenergylett.7b00508http://dx.doi.org/10.1021/acsenergylett.7b00508
TAN K, LIN P, WANG G, et al. Controllable design of solid-state perovskite solar cells by SCAPS device simulation [J]. Solid⁃State Electron., 2016, 126: 75-80. doi: 10.1016/j.sse.2016.09.012http://dx.doi.org/10.1016/j.sse.2016.09.012
HUANG L K, SUN X X, LI C, et al. Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation [J]. Sol. Energy Mater. Sol. Cells, 2016, 157: 1038-1047. doi: 10.1016/j.solmat.2016.08.025http://dx.doi.org/10.1016/j.solmat.2016.08.025
张康杰, 闫伟博, 辛颢. 苯乙胺钝化钙钛矿埋底界面提高太阳能电池性能 [J]. 发光学报, 2023, 44(9): 1636-1643.
ZHANG K J, YAN W B, XIN H. Passivation of perovskite buried-interface using phenethylamine for enhanced solar cell performance [J]. Chin. J. Lumin., 2023, 44(9): 1636-1643. (in Chinese)
邹宇, 李昭, 陈衡慧, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响 [J]. 发光学报, 2021, 42(5): 682-690. doi: 10.37188/cjl.20210045http://dx.doi.org/10.37188/cjl.20210045
ZOU Y, LI Z, CHEN H H, et al. Effect of interfacial modification for TiO2-based planar perovskite solar cells using NaTFSI [J]. Chin. J. Lumin., 2021, 42(5): 682-690. (in Chinese). doi: 10.37188/cjl.20210045http://dx.doi.org/10.37188/cjl.20210045
GAO Z W, WANG Y, CHOY W C H. Buried interface modification in perovskite solar cells: a materials perspective [J]. Adv. Energy Mater., 2022, 12(20): 2104030. doi: 10.1002/aenm.202104030http://dx.doi.org/10.1002/aenm.202104030
ZHANG C C, YUAN S, LOU Y H, et al. Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application [J]. Adv. Mater., 2020, 32(38): 2001479. doi: 10.1002/adma.202001479http://dx.doi.org/10.1002/adma.202001479
CHEN B, CHEN H, HOU Y, et al. Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers [J]. Adv. Mater., 2021, 33(41): 2103394. doi: 10.1002/adma.202103394http://dx.doi.org/10.1002/adma.202103394
ZHENG Z H, LI F M, GONG J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22% [J]. Adv. Mater., 2022, 34(21): 2109879. doi: 10.1002/adma.202109879http://dx.doi.org/10.1002/adma.202109879
0
浏览量
203
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构