浏览全部资源
扫码关注微信
1.华南理工大学材料科学与工程学院 发光材料与器件国家重点实验室,广东省光纤激光材料与应用技术重点实验室, 广东 广州 510640
2.华南理工大学 物理与光电学院, 广东 广州 510640
[ "苏彬彬(1991-),男,陕西延安人,博士研究生,2018年于西安建筑科技大学获得硕士学位,主要从事新型零维金属卤化物发光材料的研究。E-mail: 906565162@qq.com" ]
[ "夏志国(1979-),男,湖北黄陂人,博士,教授,2008年于清华大学获得博士学位,主要从事稀土掺杂固体发光材料和新型金属卤化物发光材料的研究。E-mail:xiazg@scut.edu.cn" ]
纸质出版日期:2021-06-01,
收稿日期:2021-03-12,
修回日期:2021-03-29,
扫 描 看 全 文
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展[J]. 发光学报, 2021,42(6):733-754.
Bin-bin SU, Zhi-guo XIA. Research Progresses of Photoluminescence and Application for Emerging Zero-dimensional Metal Halides Luminescence Materials[J]. Chinese Journal of Luminescence, 2021,42(6):733-754.
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展[J]. 发光学报, 2021,42(6):733-754. DOI: 10.37188/CJL.20210088.
Bin-bin SU, Zhi-guo XIA. Research Progresses of Photoluminescence and Application for Emerging Zero-dimensional Metal Halides Luminescence Materials[J]. Chinese Journal of Luminescence, 2021,42(6):733-754. DOI: 10.37188/CJL.20210088.
零维(0D)金属卤化物是一类新兴的发光材料体系,它们具有独特的“主-客”体结构,即独立的阴离子金属卤化物多面体客体规则有序地分布在有机阳离子或碱金属阳离子形成的主体框架中。这种具有相对较“软”晶格的0D金属卤化物材料的发光主要源于自陷激子(Self-trapped excitons
STEs)复合,其通常呈现出宽带发射,且具有大的斯托克斯位移。通过筛选不同的及多样化构型的金属卤化物多面体,将其与合适的有机阳离子或者Cs
+
等组合,可形成多种新型结构的0D金属卤化物,并实现丰富的STEs发光特性,其可调节的荧光发射不仅可以覆盖整个可见光区,还可实现单相白光或近红外发光,成为光致发光材料研究领域的一个热点和重点。基于此,本文结合本课题组在该领域的研究工作基础,首先讨论了0D金属卤化物的光致发光机理;其次,介绍了具有不同多面体构型的0D金属卤化物材料的发光特性及应用;最后,总结了0D金属卤化物目前亟待解决的关键科学问题,并对0D金属卤化物的未来发展方向进行了展望。
Zero-dimensional(0D) metal halides belong to a new kind of luminescent materials
and they have the unique "host-guest" structure
in which the isolated anionic metal halide polyhedrons are regularly distributed in the main body of organic cations or alkali metal ions. Generally
0D metal halides with relatively "soft" lattice usually present broad band emission with large Stokes shift
and their luminescence mechanism is mainly derived from self-trapped excitons(STEs) recombination. By screening different metal halide polyhedrons with diversified configurations
one can combine them with appropriate organic cations or alkali metal ions to form new 0D metal halides with different structure types. The obtained 0D metal halides show rich STEs luminescence properties
and their tunable fluorescence emission can be available to cover the entire visible light region. Moreover
it can also realize single-phase white light emission or near infrared emission
making them become a hot spot in the field of photoluminescence materials. Based on our work and others in this field
the photoluminescence mechanisms of 0D metal halides are firstly discussed in this review. Secondly
the luminescence properties and applications of 0D metal halide materials with different polyhedron configurations are introduced. Finally
the key scientific problems of 0D metal halides during the development are summarized
and the future research direction is briefly proposed.
金属卤化物光致发光LED应用
metal halidesphotoluminescenceLED application
LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides [J].Chem. Soc. Rev., 2021, 50(4):2626-2662.
AKKERMAN Q A, ABDELHADY A L, MANNA L. Zero-dimensional cesium lead halides:history, properties, and challenges [J].J. Phys. Chem. Lett., 2018, 9(9):2326-2337.
ZHOU C K, XU L J, LEE S J, et al. Recent advances in luminescent zero-dimensional organic metal halide hybrids [J].Adv. Opt. Mater., 2020, doi: 10.1002/adom.202001766http://doi.org/10.1002/adom.202001766.
TAN Z F, CHU Y M, CHEN J X, et al. Lead‐free perovskite variant solid solutions Cs2Sn1-xTexCl6:bright luminescence and high anti-water stability [J].Adv. Mater., 2020, 32(32):2002443.
CHANG T, WEI Q L, ZENG R S, et al. Efficient energy transfer in Te4+-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via A-site Rb-alloying strategy [J].J. Phys. Chem. Lett., 2021, 12(7):1829-1837.
ZHU D X, ZAFFALON M L, PINCHETTI V, et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals [J].Chem. Mater., 2020, 32(13):5897-5903.
SU B B, MOLOKEEV M S, XIA Z G. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying [J].J. Mater. Chem. C, 2019, 7(36):11220-11226.
TAN Z F, LI J H, ZHANG C, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant:photoluminescence induced by impurity doping [J].Adv. Funct. Mater., 2018, 28(29):1801131-1-10.
LI Z Y, LI Y, LIANG P, et al. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency [J].Chem. Mater., 2019, 31(22):9363-9371.
ZHANG H H, LIAO Q, WU Y S, et al. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability [J].Phys. Chem. Chem. Phys., 2017, 19(43):29092-29098.
ZHOU L, LIAO J F, HUANG Z G, et al. A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection [J].Angew. Chem. Int. Ed., 2019, 58(16):5277-5281.
ROCCANOVA R, YANGUI A, NHALIL H, et al. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0≤x≤5) [J].ACS Appl. Electron. Mater., 2019, 1(3):269-274.
ZHANG L, WANG K, ZOU B. Bismuth halide perovskite-like materials:current opportunities and challenges [J].ChemSusChem, 2019, 12(8):1612-1630.
ZHOU L, LIAO J F, HUANG Z G, et al. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal [J].Angew. Chem. Int. Ed., 2019, 58(43):15435-15440.
RAY D, CLARK C, PHAM H Q, et al. Computational study of structural and electronic properties of lead-free CsMI3 perovskites (M=Ge, Sn, Pb, Mg, Ca, Sr, and Ba) [J].J. Phys. Chem. C, 2018, 122(14):7838-7848.
MORAD V, CHERNIUKH I, PÖTTSCHACHER L, et al. Manganese(Ⅱ) in tetrahedral halide environment:factors governing bright green luminescence [J].Chem. Mater., 2019, 31(24):10161-10169.
ZHOU C K, LIN H R, SHI H L, et al. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly Stokes-shifted deep-red emission [J].Angew. Chem. Int. Ed., 2018, 57(4):1021-1024.
ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency [J].Chem. Sci., 2018, 9(3):586-593.
YIN J, ZHANG Y H, BRUNO A, et al. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals [J].ACS Energy Lett., 2017, 2(12):2805-2811.
WU Z Y, ZHANG Q Q, LI B H, et al. Stabilizing the CsSnCl3 perovskite lattice by B-site substitution for enhanced light emission [J].Chem. Mater., 2019, 31(14):4999-5004.
ZHOU G J, LIU Z Y, HUANG J L, et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides:a case study of (C10H16N)2Zn1-xMnxBr4 solid solutions [J].J. Phys. Chem. Lett., 2020, 11(15):5956-5962.
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure [J].Adv. Mater., 2018, 30(43):1804547-1-6.
LIAN L Y, ZHENG M Y, ZHANG P, et al. Photophysics in Cs3Cu2X5 (X=Cl, Br, or I):highly luminescent self-trapped excitons from local structure symmetrization [J].Chem. Mater., 2020, 32(8):3462-3468.
MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides:highly emissive singlet and triplet self-trapped excitons and X-ray scintillation [J].J. Am. Chem. Soc., 2019, 141(25):9764-9768.
ZENG R S, BAI K, WEI Q L, et al. Boosting triplet self-trapped exciton emission in Te(Ⅳ)-doped Cs2SnCl6 perovskite variants [J].Nano Res., 2021, 14(5):1551-1558.
LIU S P, YANG B, CHEN J S, et al. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals [J].Angew. Chem. Int. Ed., 2020, 59(49):21925-21929.
SONG G M, LI M Z, YANG Y, et al. Lead-free tin(Ⅳ)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission [J].J. Phys. Chem. Lett., 2020, 11(5):1808-1813.
XU L J, LEE S J, LIN X S, et al. Multicomponent organic metal halide hybrid with white emissions [J].Angew. Chem. Int. Ed., 2020, 59(33):14120-14123.
LI M Z, ZHOU J, ZHOU G J, et al. Hybrid metal halides with multiple photoluminescence centers [J].Angew. Chem. Int. Ed., 2019, 58(51):18670-18675.
ZHOU C K, LIN H R, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency [J].ACS Energy Lett., 2019, 4(7):1579-1583.
JING Y Y, LIU Y, ZHAO J, et al. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals [J].J. Phys. Chem. Lett., 2019, 10(23):7439-7444.
JING Y Y, LIU Y, JIANG X X, et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals [J].Chem. Mater., 2020, 32(12):5327-5334.
CHENG P F, FENG L, LIU Y F, et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission [J].Angew. Chem. Int. Ed., 2020, 59(48):21414-21418.
MCCALL K M, MORAD V, BENIN B M, et al. Efficient lone-pair-driven luminescence:structure-property relationships in emissive 5s2 metal halides [J].ACS Mater. Lett., 2020, 2(9):1218-1232.
SU B B, ZHOU G J, HUANG J L, et al. Mn2+-doped metal halide perovskites:structure, photoluminescence, and application [J].Laser Photon. Rev., 2020, 15(1):2000334-1-29.
ZHANG X Y, LI L N, SUN Z H, et al. Rational chemical doping of metal halide perovskites [J].Chem. Soc. Rev., 2019, 48(2):517-539.
HONG K, VAN LE Q, KIM S Y, et al. Low-dimensional halide perovskites:review and issues [J].J. Mater. Chem. C, 2018, 6(9):2189-2209.
LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites [J].ACS Energy Lett., 2017, 3(1):54-62.
SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites [J].Acc. Chem. Res., 2018, 51(3):619-627.
SMITH M D, JAFFE A, DOHNER E R, et al. Structural origins of broadband emission from layered Pb-Br hybrid perovskites [J].Chem. Sci., 2017, 8(6):4497-4504.
ZHOU G J, LI M Z, ZHAO J, et al. Single-component white-light emission in 2D hybrid perovskites with hybridized halogen atoms [J].Adv. Opt. Mater., 2019, 7(24):1901335-1-7.
LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites:fundamentals, status, and potential applications [J].J. Phys. Chem. Lett., 2019, 10(8):1999-2007.
ZHUANG Z W, PENG C D, ZHANG G Y, et al. Intrinsic broadband white-Light emission from ultrastable, cationic lead halide layered materials [J].Angew. Chem. Int. Ed., 2017, 56(46):14411-14416.
ZHOU J, LI M Z, NING L X, et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies [J].J. Phys. Chem. Lett., 2019, 10(6):1337-1341.
ROCCANOVA R, HOUCK M, YANGUI A, et al. Broadband emission in hybrid organic-inorganic halides of group 12 metals [J].ACS Omega, 2018, 3(12):18791-18802.
ZHANG X Y, LI L N, WANG S S, et al. [(N-AEPz)ZnCl4]Cl:a “green” metal halide showing highly efficient bluish-white-light emission [J].Inorg. Chem., 2020, 59(6):3527-3531.
LI S L, ZHANG F Q, ZHANG X M. An organic-ligand-free thermochromic luminescent cuprous iodide trinuclear cluster:evidence for cluster centered emission and configuration distortion with temperature [J].Chem. Commun., 2015, 51(38):8062-8065.
LI S, XU J, LI Z G, et al. One-dimensional lead-free halide with near-unity greenish-yellow light emission [J].Chem. Mater., 2020, 32(15):6525-6531.
YUE C Y, LIN N, GAO L, et al. Organic cation directed one-dimensional cuprous halide compounds:syntheses, crystal structures and photoluminescence properties [J].Dalton Trans., 2019, 48(27):10151-10159.
JELLICOE T C, RICHTER J M, GLASS H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals [J].J. Am. Chem. Soc., 2016, 138(9):2941-2944.
XU L J, PLAVIAK A, LIN X S, et al. Metal halide regulated photophysical tuning of zero-dimensional organic metal halide hybrids:from efficient phosphorescence to ultralong afterglow [J].Angew. Chem. Int. Ed., 2020, 59(51):23067-23071.
MAO L L, GUO P J, WANG S X, et al. Design principles for enhancing photoluminescence quantum yield in hybrid manganese bromides [J].J. Am. Chem. Soc., 2020, 142(31):13582-13589.
LI M Z, ZHOU J, MOLOKEEV M S, et al. Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone [J].Inorg. Chem., 2019, 58(19):13464-13470.
LI Y Y, VASHISHTHA P, ZHOU Z C, et al. Room temperature synthesis of stable, printable Cs3Cu2X5 (X=I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X=Cl) [J].Chem. Mater., 2020, 32(13):5515-5524.
DU P, LUO L H, CHENG W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED [J].J. Am. Ceram. Soc., 2020, 103(2):1149-1155.
LIN H R, ZHOU C K, CHAABAN M, et al. Bulk assembly of zero-dimensional organic lead bromide hybrid with efficient blue emission [J].ACS Mater. Lett., 2019, 1(6):594-598.
CHEN D, DAI F L, HAO S Q, et al. Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M=Bi and Sb) [J].J. Mater. Chem. C, 2020, 8(22):7322-7329.
SONG G M, LI M Z, ZHANG S Z, et al. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules [J].Adv. Funct. Mater., 2020, 30(32):2002468.
HE Q Q, ZHOU C K, XU L J, et al. Highly stable organic antimony halide crystals for X-ray scintillation [J].ACS Mater. Lett., 2020, 2(6):633-638.
ZHOU C K, WORKU M, NEU J, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency [J].Chem. Mater., 2018, 30(7):2374-2378.
SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6:highly luminescent zero-dimensional perovskite solids [J].ACS Energy Lett., 2016, 1(4):840-845.
SU B B, SONG G M, MOLOKEEV M S, et al. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6 [J].Inorg. Chem., 2020, 59(14):9962-9968.
PATERNO G M, MISHRA N, BARKER A J, et al. Broadband defects emission and enhanced ligand Raman scattering in 0D Cs3Bi2I9 colloidal nanocrystals [J].Adv. Funct. Mater., 2019, 29(21):1805299-1-6.
CHEN X M, ZHANG F, GE Y, et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence:nonstoichiometry induced transformation and light-emitting applications [J].Adv. Funct. Mater., 2018, 28(16):1706567-1-7.
BENIN B M, DIRIN D N, MORAD V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides [J].Angew. Chem. Int. Ed., 2018, 57(35):11329-11333.
MCCALL K M, BENIN B M, WÖRLE M, et al. Expanding the 0D Rb7M3X16 (M=Sb, Bi; X=Br, I) family:dual-band luminescence in Rb7Sb3Br16 [J].Helv. Chim. Acta, 2021, 104(1):e2000206-1-11.
ZHANG Y X, LIU Y C, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection [J].Nat. Commun., 2020, 11(1):2304.
JI C M, WANG P, WU Z Y, et al. Inch-size single crystal of a lead-free organic-inorganic hybrid perovskite for high-performance photodetector [J].Adv. Funct. Mater., 2018, 28(14):1705467-1-7.
YANGUI A, ROCCANOVA R, WU Y T, et al. Highly efficient broad-band luminescence involving organic and inorganic molecules in a zero-dimensional hybrid lead chloride [J].J. Phys. Chem. C, 2019, 123(36):22470-22477.
CUI B B, HAN Y, HUANG B L, et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement [J].Nat. Commun., 2019, 10(1):5190-1-8.
SUN C, JIANG K, HAN M F, et al. A zero-dimensional hybrid lead perovskite with highly efficient blue-violet light emission [J].J. Mater. Chem. C, 2020, 8(34):11890-11895.
PENG Y, LI L N, JI C M, et al. Tailored synthesis of an unprecedented Pb-Mn heterometallic halide hybrid with enhanced emission [J].J. Am. Chem. Soc., 2019, 141(31):12197-12201.
ZHANG R L, MAO X, YANG Y, et al. Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission [J].Angew. Chem. Int. Ed., 2019, 58(9):2725-2729.
ZHOU G J, JIANG X X, MOLOKEEV M, et al. Optically modulated ultra-broad-band warm white emission in Mn2+-doped (C6H18N2O2)PbBr4 hybrid metal halide phosphor [J].Chem. Mater., 2019, 31(15):5788-5795.
LIAO H X, ZHAO M, MOLOKEEV M S, et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4∶Eu2+ [J].Angew. Chem. Int. Ed., 2018, 57(36):11728-11731.
ZHOU G J, SU B B, HUANG J L, et al. Broad-band emission in metal halide perovskites:mechanism, materials, and applications [J].Mater. Sci. Eng. R, 2020, 141:100548.
WORKU M, TIAN Y, ZHOU C K, et al. Sunlike white-light-emitting diodes based on zero-dimensional organic metal halide hybrids [J].ACS Appl. Mater. Interfaces, 2018, 10(36):30051-30057.
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2∶Eu2+ phosphor for backlight display application [J].Adv. Mater., 2018, 30(38):1802489-1-7.
XIA Z G, POEPPELMEIER K R. Chemistry-inspired adaptable framework structures [J].Acc. Chem. Res., 2017, 50(5):1222-1230.
GAO L, YAN Q F. Recent advances in lead halide perovskites for radiation detectors [J].Solar RRL, 2020, 4(2):1900210-1-12.
WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J].Nat. Photonics, 2016, 10(5):333-339.
YANG Z Q, DENG Y H, ZHANG X W, et al. High-performance single-crystalline perovskite thin-film photodetector [J].Adv. Mater., 2018, 30(8):1704333.
LIU Y C, XU Z, YANG Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging [J].Matter, 2020, 3(1):180-196.
ZHAO X, NIU G D, ZHU J S, et al. All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator [J].J. Phys. Chem. Lett., 2020, 11(5):1873-1880.
YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator [J].Adv. Mater., 2019, 31(44):1904711-1-8.
ZHANG Y H, SUN R J, OU X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens [J].ACS Nano, 2019, 13(2):2520-2525.
LEUTZ H, D’AMBROSIO C. On the scintillation response of NaI(TI)-crystals [J].IEEE Trans. Nucl. Sci., 1997, 44(2):190-193.
VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator:Ce3+ activated LaBr3 [J].Appl. Phys. Lett., 2001, 79(10):1573-1575.
VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator:Ce3+ activated LaCl3 [J].Appl. Phys. Lett., 2000, 77(10):1467-1468.
WANG K, ZHANG H, GU Z J. All-inorganic perovskite nanocrystal materials:new generation of scintillators for high quality X-ray imaging [J].Sci. Bull., 2019, 64(17):1205-1206.
YANG B, PAN W C, WU H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging [J].Nat. Commun., 2019, 10(1):1989-1-10.
WANG L L, FU K F, SUN R J, et al. Ultra-stable CsPbBr3 perovskite nanosheets for X-ray imaging screen [J].Nano-Micro Lett., 2019, 11(1):52-1-8.
CAO J T, GUO Z, ZHU S, et al. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging [J].ACS Appl. Mater. Interfaces, 2020, 12(17):19797-19804.
LIAN L Y, ZHENG M Y, ZHANG W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons [J].Adv. Sci., 2020, 7(11):2000195-1-9.
ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators [J].Light Sci. Appl., 2020, 9:112.
XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide [J].Nat. Commun., 2020, 11(1):4329.
PETERSON B J. Infrared imaging video bolometer [J].Rev. Sci. Instrum., 2000, 71(10):3696-3701.
BAGAVATHIAPPAN S, LAHIRI B B, SARAVANAN T, et al. Infrared thermography for condition monitoring—a review [J].Infrared Phys. Technol., 2013, 60:35-55.
BRÜBACH J, PFLITSCH C, DREIZLER A, et al. On surface temperature measurements with thermographic phosphors:a review [J].Prog. Energy Combust. Sci., 2013, 39(1):37-60.
JONES H G, SERRAJ R, LOVEYS B R, et al. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field [J].Funct. Plant Biol., 2009, 36(11):978-989.
YAKUNIN S, BENIN B M, SHYNKARENKO Y, et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites [J].Nat. Mater., 2019, 18(8):846-852.
0
浏览量
1382
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构