1.重庆邮电大学 理学院&“重庆邮电大学-伦敦布鲁内尔大学”交叉创新研究院, 重庆 400065
2.塔尔图大学 物理所, 爱沙尼亚 塔尔图 50411
3.琴斯托霍瓦师范大学 物理所, 波兰 琴斯托霍瓦 42200
4.戴恩特里公司通用电气顾问部, 美国 克利夫兰 44110
5.东欧国立大学 固态物理系, 乌克兰 卢茨克 43025
[ "BRIK Mikhail G (1969-), received his PhD from Kuban State University(Russia) in 1995 and his DSc(habilitation) from the Institute of Physics, Polish Academy of Sciences(Poland) in 2012. Since 2007 he is a professor at the Institute of Physics, University of Tartu, Estonia. Before that, he worked at Kyoto University(Japan) from 2003 to 2007, Weizmann Institute of Science(Israel) in 2002, Asmara University(Eritrea) from 2000 to 2001, and Kuban State University from 1995 to 2000. He is also a distinguished visiting professor at Chongqing University of Posts and Telecommunications(China) and Professor at Jan Długosz University(Poland). Since 2015 he serves as one of the editors ofOptical Materials(Elsevier). Professor Brik's scientific interests cover theoretical spectroscopy of transition metal and rare earth ions in optical materials, crystal field theory, and ab initio calculations of the physical properties of pure and doped functional compounds. He is a coeditor of two books and author of 12 book chapters and about 410 papers in international journals. According to Google Scholar(June 2020), he has more than 8 500 citations with H index 45. He received the Dragomir Hurmuzescu Award of Romanian Academy in 2006 and the State Prize of the Republic of Estonia in the field of exact sciences in 2013. In 2018 he received the state professor title from the President of Poland. E-mail:mikhail.brik@ut.ee" ]
[ "MA Chong-geng (1980-), received his PhD from University of Science and Technology of China in 2008. He spent three years(2010-2013) as a post-doctor in University of Tartu with the financial support of European Social Fund. He was also a visiting professor at University of Verona in 2017. His area of scientific interests covers the first-principles and crystal-field design of luminescent materials. He has published one book and more than 80 papers in international journals, which attracted more than 1 600 citations(H index=21). Currently he is a full professor and the director of CQUPT-BUL Innovation Institute at Chongqing University of Posts and Telecommunications. E-mail:macg@cqupt.edu.cn" ]
[ "SRIVASTAVA Alok M (1960-), received his PhD from in 1986 from Polytechnic University of New York, Brooklyn, New York. Dr. Srivastava began his industrial career at General Electric's (GE) Global Research Center in Niskayuna, New York, in 1989 at GE GRC he established the phosphor laboratory where he laid the groundwork for the design and development of luminescent materials. Dr. Srivastava's research describes the relationship between the synthesis, crystal structure and optical properties of luminescent ions in solids. Dr. Srivastava holds a total of 141 U.S. patents and more than 100 peer reviewed publications. In 2015 he was appointed the Editor-in-Chief of Journal of Optical Materials(Elsevier). For his pioneering research in oxide quantum splitting phosphors he was awarded the First Centennial Outstanding Achievement Award of the Luminescence and Display Materials Division of The Electrochemical Society(2004). He has served as the Chairman of the Luminescence and Display Materials group of The Electrochemical Society. In 2019, Dr. Srivastava was elected Fellow of The Electrochemical Society. Currently, Dr. Srivastava has a technical consulting firm that is based on his more than 35 years of experience and broad technical knowledge in the area of solid-state luminescence. He leverages his expertise to assist industrial and academic scientists in the fundamental understanding, design and synthesis of luminescent products. E-mail:srivastaam@outlook.com" ]
[ "PIASECKI Michal (1957-), received his MSc in Physics(honors degree) in Institute of Physics, Nicolaus Copernicus University Torun(present A.Jablonski Institute), Ph.D. from Institute of Low Temperature and Structural Research Polish Academy of Sciences in Wroclaw(Poland) and habilitation in Zielona Gora University(Poland). Now he is working as a professor and Head of Department of Theoretical Physics of Jan Długosz University(Poland) and Lesya Ukrainka Eastern European National University(Ukraine). His research interests cover phase transitions, ferroelectricity, thermoelectricity, luminescence and non-linear optics. He conducted several EU projects utilizing ultra-UV(synchrotron) spectroscopic ellipsometry for investigations of novel photonic materials and bilateral research projects between Poland and France, Portugal, etc as partner countries. He has more than 170 publications in SCI journals, H-index=22, more than 1 900 citations. He has several awards including those from Polish Academy of Sciences -2 times; Polish Ministry of Sciences and Higher Education; Rector of Jan Długosz University. He was a visiting professor in University of Reims Champagne-Ardenne(France) and Vellore Institute of Technology, India. E-mail:m.piasecki@ujd.edu.pl" ]
扫 描 看 全 文
BRIK Mikhail G, 马崇庚, SRIVASTAVA Alok M, 等. 用于固态照明的Mn4+离子光谱学[J]. 发光学报, 2020,41(9):1011-1029.
BRIK Mikhail G, Chong-geng MA, SRIVASTAVA Alok M, et al. Mn4+ Ions for Solid State Lighting[J]. Chinese Journal of Luminescence, 2020,41(9):1011-1029.
BRIK Mikhail G, 马崇庚, SRIVASTAVA Alok M, 等. 用于固态照明的Mn4+离子光谱学[J]. 发光学报, 2020,41(9):1011-1029. DOI: 10.37188/fgxb20204109.1011.
BRIK Mikhail G, Chong-geng MA, SRIVASTAVA Alok M, et al. Mn4+ Ions for Solid State Lighting[J]. Chinese Journal of Luminescence, 2020,41(9):1011-1029. DOI: 10.37188/fgxb20204109.1011.
Mn,4+,离子激活的荧光粉在固态照明领域作为红光发射的热点载体正日益受到关注。我们针对当前研究热度撰写了Mn,4+,离子光谱学的回顾,并在回顾中聚焦了许多对红色荧光粉商业研制有价值的重要基础研究点。这些研究点涵盖了如何理解自由和晶场状态下Mn,4+,离子的能级结构以及Mn,4+,发射波长对基质的依赖关系。此外,我们就如何实验调控Mn,4+,离子掺杂型荧光粉的发射波长和发光强度给出了许多实际可行的建议。更为重要的是,我们收集并讨论了100多种荧光粉基质中Mn,4+,离子光谱学参数,对它们的理解将会为未来Mn,4+,掺杂型红色荧光粉的实验开发奠定基础。
Phosphors activated with Mn,4+, ion are gaining prominence in the field of solid-state lighting as generators of red photon. In the present review, we focus on several important points that are fundamentally important to produce a commercially useful phosphor. This includes an understanding of the Mn,4+, energy levels in the free state and in the crystal fields and of the host dependent variations in the Mn,4+, emission wavelength. Additionally, we formulate several practical recommendations on how to tune the emission wavelength and emission intensity of Mn,4+,-doped phosphors. The main spectroscopic parameters of the Mn,4+, ion in more than 100 phosphor materials are collected and discussed.
Mn4+离子红色荧光粉白光LED
Mn4+ ionsred phosphorswhite LED
T JÜSTEL , H NIKOL , C RONDA . New developments in the field of luminescent materials for lighting and displays . Angew.Chem.Int.Ed. , 1998 . 37 ( 22 ): 3085 - 3103.
HÖPPE H A.Recent developments in the field of inorganic phosphors[J].Angew.Chem.Int.Ed., 2009, 48(20):3572-3582.
YE S, XIAO F, PAN Y X, et al..Phosphors in phosphor-converted white light-emitting diodes:recent advances in materials, techniques and properties[J].Mater.Sci.Eng.R Rep., 2010, 71(1):1-34.
LIN C C, LIU R S.Advances in phosphors for light-emitting diodes[J].J.Phys.Chem.Lett., 2011, 2(11):1268-1277.
SMET P F, PARMENTIER A B, POELMAN D.Selecting conversion phosphors for white light-emitting diodes[J].J.Electrochem.Soc., 2011, 158(6):R37-R54.
XIA Z G, LIU R S.Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs[J].J.Phys.Chem.C, 2012, 116(29):15604-15609.
BRIK M G, SRIVASTAVA A M.On the optical properties of the Mn4+ ion in solids[J].J.Lumin., 2013, 133:69-72.
SHANG M M, LI C X, LIN J.How to produce white light in a single-phase host?[J].Chem.Soc.Rev., 2014, 43(5) 1372-1386.
BÜNZLI J C G.On the design of highly luminescent lanthanide complexes[J].Chem.Soc.Rev., 2015, 293-294:19-47.
LI J H, YAN J, WEN D W, et al..Advanced red phosphors for white light-emitting diodes[J].J.Mater.Chem.C, 2016, 4(37):8611-8623.
LIN C C, MEIJERINK A, LIU R S.Critical red components for next-generation white LEDs[J].J.Phys.Chem.Lett., 2016, 7(3):495-503.
XIA Z G, MEIJERINK A.Ce3+-doped garnet phosphors:composition modification, luminescence properties and applications[J].Chem.Soc.Rev., 2017, 46(1):275-299.
LIU R S.Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications[M].Berlin, Heidelberg:Springer, 2017.
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al..Mn2+ and Mn4+ red phosphors:synthesis, luminescence and applications in WLEDs.A review[J].J.Mater.Chem.C, 2018, 6(11):2652-2671.
BRIK M G, MA C G.Theoretical Spectroscopy of Transition Metal and Rare Earth Ions:From Free State to Crystal Field[M].Singapore:Jenny Stanford Publishing, 2020.
AVRAM N M, BRIK M G.Optical Properties of 3d-ions in Crystals:Spectroscopy and Crystal Field Analysis[M].Beijing:Tsinghua University Press, 2013.
BRIK M G, SRIVASTAVA A M.Critical review-a review of the electronic structure and optical properties of ions with d3 electron configuration (V2+, Cr3+, Mn4+, Fe5+) and main related misconceptions[J].ECS J.Sol.State Sci.Technol., 2018, 7(1):R3079-R3085.
MORRISON C A.Crystal Fields for Transition-Metal Ions in Laser Host Materials[M].Berlin, Heidelberg:Springer-Verlag, 1992.
HENDERSON B, IMBUSCH G F.Optical Spectroscopy of Inorganic Solids[M].Oxford:Clarendon Press, 1989.
NAKAMURA S, MUKAI T, SENOH M.Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J].Appl.Phys.Lett., 1994, 64(13):1687-1689.
NAKAMURA S, SENOH M, NAGAHAMA S, et al..InGaN-based multi-quantum-well-structure laser diodes[J].Jpn.J.Appl.Phys., 1996, 35(1B):L74-L76.
SETLUR A A, RADKOV E V, HENDERSON C S,et al..Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors[J].Chem.Mater., 2010, 22(13):4076-4082.
SIJBOM H F, VERSTRAETE R, JOOS J J, et al..K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs:a review of properties and perspectives[J].Opt.Mater.Exp., 2017, 7(9):3332-3365.
BEERS W W, SMITH D, COHEN W E, et al..Temperature dependence(13-600 K) of Mn4+ lifetime in commercial Mg28Ge7.55O32F15.04 and K2SiF6 phosphors[J].Opt.Mater., 2018, 84:614-617.
RADKOV E V, GRIGOROV L S, SETLUR A A, et al..Red line emitting phosphor materials for use in LED applications: US, 7497973[P].2009-03-03.
RADKOV E V, SETLUR A A, SRIVASTAVA A M, et al..Red line emitting phosphors for use in led applications: US, 7648649[P].2010-01-19.
GARCIA-SANTAMARIA F, MURPHY J E, SETLUR A A, et al..Concentration quenching in K2SiF6:Mn4+ phosphors[J].ECS J.Solid State Sci.Technol., 2018, 7(1):R3030-R3033.
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M.Influence of covalency on the Mn4+2 Eg→4A2g emission energy in crystals[J].ECS J.Solid State Sci.Technol., 2015, 4(3):R39-R43.
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al..Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect[J].ECS J.Solid State Sci.Technol., 2016, 5(1):R3067-R3077.
ADACHI S.Review-Tanabe-Sugano energy-level diagram and racah parameters in Mn4+-activated red and deep red-emitting phosphors[J].ECS J.Solid State Sci.Technol., 2019, 8(12):R183-R196.
SEKIGUCHI D, ADACHI S.Synthesis and photoluminescence spectroscopy of BaGeF6:Mn4+ red phosphor[J].Opt.Mater., 2015, 42:417-422.
SEKIGUCHI D, NARA J, ADACHI S.Photoluminescence and raman scattering spectroscopies of BaSiF6:Mn4+ red phosphor[J].J.Appl.Phys., 2013, 113(18):183516-1-6.
XI L Q, PAN Y X.Tailored photoluminescence properties of a red phosphor BaSnF6:Mn4+ synthesized from Sn metal at room temperature and its formation mechanism[J].Mater.Res.Bull., 2017, 86:57-62.
SEKIGUCHI D, ADACHI S.Synthesis and optical properties of BaTiF6:Mn4+ red phosphor[J].ECS J.Solid State Sci.Technol., 2014, 3(4):R60-R64.
DENG T T, SONG E H, ZHOU Y Y, et al..Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6:Mn4+ (A=Rb, Cs; B=K, Rb) via neighboring-cation modulation[J].J.Mater.Chem.C, 2017, 5(47):12422-12429.
BARANDIARÁN Z, SEIJO L.Alternative configuration interaction expansions for transition metal ions with intermediate oxidation states in crystals:the structure and absorption spectrum of Cs2GeF6:Mn4+[J].J.Chem.Phys., 2001, 115(15):7061-7065.
SENDEN T, VAN HARTEN E J, MEIJERINK A.Synthesis and narrow red luminescence of Cs2HfF6:Mn4+, a new phosphor for warm white LEDs[J].J.Lumin., 2018, 194:131-138.
ZHANG J F, LIU L L, HE S G, et al..Cs2MnF6 red phosphor with ultrahigh absorption efficiency[J].Inorg.Chem., 2019, 58(22):15207-15215.
ZHOU Y Y, SONG E H, BRIK M G, et al..Non-equivalent Mn4+ doping into A2NaScF6(A=K, Rb, Cs) hosts toward short fluorescence lifetime for backlight display application[J].J.Mater.Chem.C, 2019, 7(30):9203-9210.
XU Y K, ADACHI S.Properties of Mn4+-activated hexafluorotitanate phosphors[J].J.Electrochem.Soc., 2011, 158(3):J58-J65.
ARAI Y, ADACHI S.Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors[J].J.Lumin., 2011, 131(12):2652-2660.
ZHOU Q, TAN H Y, ZHOY Y Y, et al..Optical performance of Mn4+ in a new hexa-coordinated fluorozirconate complex of Cs2ZrF6[J].J.Mater.Chem.C, 2016, 4(31):7443-7448.
MING H, ZHANG J F, LIU L L, et al..Luminescent properties of a Cs3AlF6:Mn4+ red phosphor for warm white light-emitting diodes[J].ECS J.Sol.State Sci.Technol., 2018, 7(9):R149-R155.
KUMADA N, YANAGIDA S, TAKEI T, et al..Hydrothermal synthesis and crystal structure of new red phosphors, KNaMF7:Mn4+ (M:Nb, Ta)[J].Mater.Res.Bull., 2019, 115:170-175.
DENG T T, SONG E H, SU J, et al..Stable narrowband red emission in fluorotellurate KTeF5:Mn4+ via Mn4+ noncentral-site occupation[J].J.Mater.Chem.C, 2018, 6(16):4418-4426.
HU T, LIN H, LIN F L, et al..Narrow-band red-emitting KZnF3:Mn4+ fluoroperovskites:insights into electronic/vibronic transition and thermal quenching behavior[J].J.Mater.Chem.C, 2018, 6(40) 10845-10854.
ADACHI S, TAKAHASHI T.Photoluminescent properties of K2GeF6:Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution[J].J.Appl.Phys., 2009, 106(1):013516-1-6.
TAKAHASHI T, ADACHI S.Mn4+-activated red photoluminescence in K2SiF6 phosphor[J].J.Electrochem.Soc., 2008, 155(12):E183-E188.
ZHU Y W, YUAN S, LIN H, et al..Optimizing and adjusting the photoluminescence of Mn4+-doped fluoride phosphors via forming composite particles[J].Dalton Trans., 2019, 48(2):711-717.
ZHU Y W, YU J B, LIU Y, et al..Photoluminescence properties of a novel red fluoride K2LiGaF6:Mn4+ nanophosphor[J].RSC Adv., 2017, 7(49):30588-30593.
KASA R, ARAI Y, TAKAHASHI T, et al..Photoluminescent properties of cubic K2MnF6 particles synthesized in metal immersed HF/KMnO4 solutions[J].J.Appl.Phys., 2010, 108(11):113503-1-6.
ZHU Y W, CAO L Y, BRIK M G, et al..Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6:Mn4+[J].J.Mater.Chem.C, 2017, 5(26):6420-6426.
JIANG C Y, BRIK M G, LI L H, et al..The electronic and optical properties of a narrow-band red-emitting nanophosphor K2NaGaF6:Mn4+ for warm white light-emitting diodes[J].J.Mater.Chem.C, 2018, 6(12):3016-3025.
MING H, LIU L L, HE S G, et al..An ultra-high yield of spherical K2NaScF6:Mn4+ red phosphor and its application in ultra-wide color gamut liquid crystal displays[J].J.Mater.Chem.C, 2019, 7(24):7237-7248.
MING H, ZHANG J F, LIU S F, et al..A green synthetic route to K2NbF7:Mn4+ red phosphor for the application in warm white LED devices[J].Opt.Mater., 2018, 86:352-359.
WEI L L, LIN C C, FANG M H, et al..A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications[J].J.Mater.Chem.C, 2015, 3(8):1655-1660.
KASA R, ADACHI S.Red and deep red emissions from cubic K2SiF6:Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions[J].J.Electrochem.Soc., 2012, 159(4):J89-J95.
LIN H, HU T, HUANG Q M, et al..Non-rare-earth K2XF7:Mn4+ (X=Ta, Nb):a highly-efficient narrow-band red phosphor enabling the application in wide-color-gamut LCD[J].Laser Photon.Rev., 2017, 11(6):1700148.
HUANG D C, ZHU H M, DENG Z H, et al..Moisture-resistant Mn4+-doped core-shell-structured fluoride red phosphor exhibiting high luminous efficacy for warm white light-emitting diodes[J].Angew.Chem.Int.Ed., 2019, 58(12):3843-3847.
WANG T M, GAO Y, CHEN Z P, et al..The formation of KF induced red-emitting phosphors K2TiF6·BaF(HF2):Mn4+ by cation exchange[J].J.Lumin., 2017, 188:307-312.
DENG T T, SONG E H, ZHOU Y Y, et al..Stable narrowband red phosphor K3GaF6:Mn4+ derived from hydrous K2GaF5(H2O) and K2MnF6[J].J.Mater.Chem.C, 2017, 5(37):9588-9596.
MING H, LIU S F, LIU L L, et al..Highly regular, uniform K3ScF6:Mn4+ phosphors:facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices[J].ACS Appl.Mater.Interfaces, 2018, 10(23):19783-19795.
TAN H Y, RONG M Z, ZHOU Y Y, et al..Luminescence behaviour of Mn4+ ions in seven coordination environments of K3ZrF7[J].Dalton Trans., 2016, 45(23):9654-9660.
ZHU M M, PAN Y X, WU M M, et al..Optimized photoluminescence properties of a novel red phosphor LiSrAlF6:Mn4+ synthesized at room-temperature[J].J.Alloys Compd., 2019, 774:331-337.
ZHU M M, PAN Y X, WU M M, et al..Synthesis and improved photoluminescence of a novel red phosphor LiSrGaF6:Mn4+ for applications in warm WLEDs[J].Dalton Trans., 2018, 47(37):12944-12950.
ZHU M M, PAN Y X, CHEN X, et al..Formation mechanism and optimized luminescence of Mn4+-doped unequal dual-alkaline hexafluorosilicate Li0.5Na1.5SiF6〖KG*9〗[J].J.Am.Ceram.Soc., 2018, 101(11):4983-4993.
ZHU M M, PAN Y X, XI L Q, et al..Design, preparation, and optimized luminescence of a dodec-fluoride phosphor Li3Na3Al2F12:Mn4+ for warm WLED applications[J].J.Mater.Chem.C, 2017, 5(39):10241-10250.
ZHU M M, PAN Y X, HUANG Y Q, et al..Designed synthesis, morphology evolution and enhanced photoluminescence of a highly efficient red dodec-fluoride phosphor, Li3Na3Ga2F12:Mn4+, for warm WLEDs[J].J.Mater.Chem.C, 2018, 6(3):491-499.
HONG F, CHENG H M, SONG C, et al..Novel polygonal structure Mn4+ activated In3+-based Elpasolite-type hexafluorides red phosphor for warm white light-emitting diodes (WLEDs)[J].Dalton Trans., 2019, 48(4):1376-1385.
WANG Y J, Zhou Y Y, SONG E H.Ammonium salt conversion towards Mn4+ doped (NH4)2NaScF6 narrow-band red-emitting phosphor[J].J.Alloys Compd., 2019, 811:151945.
BIN HUMAYOUN U, KWON S B, SAMI S K, et al..(NH4)3AlF6:Mn4+ a novel red phosphor-facile synthesis, structure and luminescence characteristics[J].J.Alloys Compd., 2019, 776:594-598.
SETLUR A A, MURPHY J E, SISTA S P.Quenching in Mn4+-complex fluoride phosphors:initial relationships based upon NaKSiF6:Mn4+[J].ECS J.Solid State Sci.Technol., 2020, 9(1):016018-1-4.
FANG M H, WU W L, JIN Y, et al..Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors[J].Angew.Chem.Int.Ed., 2018, 57(7):1797-1801.
XU Y K, ADACHI S.Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching[J].J.Appl.Phys., 2009, 105(1):013525-1-6.
LIU Y M, LI Y L, HUANG W J, et al..Enhancement of zero phonon line for Na 2TiF6:Mn4+, Li+ phosphors induced by Li+[J].J.Mater.Sci.:Mater.Electron., 2019, 30(15):14646-14656.
SONG E H, WANG J Q, YE S, et al..Room-temperature synthesis and warm-white LED applications of Mn4+ ion doped fluoroaluminate red phosphor Na3AlF6:Mn4+[J].J.Mater.Chem.C, 2016, 4(13):2480-2487.
XU H P, HONG F, PANG G, et al..Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6:Mn4+ red phosphor[J].J.Lumin., 2020, 219:116960.
FANG M H, YANG T H, LESNIEWSKI T, et al..Hydrogen-containing Na3HTi1-xMnxF8 narrow-band phosphor for light-emitting diodes[J].ACS Energy Lett., 2019, 4(2):527-533.
KIM M, PARK W B, LEE J W, et al..Rb3SiF7:Mn4+ and Rb2CsSiF7:Mn4+ red-emitting phosphors with a faster decay rate[J].Chem.Mater., 2018, 30(19):6936-6944.
WU W L, FANG M H, ZHOU W L, et al..High color rendering index of Rb2GeF6:Mn4+ for light-emitting diodes[J].Chem.Mater., 2017, 29(3):935-939.
WANG L Y, SONG E H, ZHOU Y Y, et al..An efficient and stable narrow band Mn4+-activated fluorotitanate red phosphor Rb2TiF6:Mn4+ for warm white LED applications[J].J.Mater.Chem.C, 2018, 6(32):8670-8678.
JIANG C Y, BRIK M G, SRIVASTAVA A M, et al..Significantly conquering moisture-induced luminescence quenching of red line-emitting phosphor Rb2SnF6:Mn4+ through H2C2O4 triggered particle surface reduction for blue converted warm white light-emitting diodes[J].J.Mater.Chem.C, 2019, 7(2) 247-255.
DENG T T, SONG E H, ZHOU Y Y, et al..Implementation of high color quality, high luminous warm WLED using efficient and thermally stable Rb3AlF6:Mn4+ as red color converter[J].J.Alloys Compd., 2019, 795:453-461.
JANG S, PARK J K, KIM M, et al..New red-emitting phosphor RbxK3-xSiF7:Mn4+(x=0, 1, 2, 3):DFT predictions and synthesis[J].RSC Adv., 2019, 9:39589-39594.
LV L F, JIANG X N, PAN Y X, et al..Luminescence properties and thermal stability of a red phosphor ZnSiF6·6H2O:Mn4+ synthesized by the one-step hydrothermal method[J].J.Lumin., 2014, 152:214-217.
HOSHINO R, ADACHI S.Optical spectroscopy of ZnSiF6·6H2O:Mn4+ red phosphor[J].J.Appl.Phys., 2013, 114(21):213502-1-6.
ZHONG J S, CHEN D Q, WANG X,et al..Synthesis and optical performance of a new red-emitting ZnTiF6·6H2O:Mn4+ phosphor for warm white-light-emitting diodes[J].J.Alloys Compd., 2016, 662:232-239.
ZHENG W C.Investigations of the zero-field splitting and the first excited state splitting and their stress dependences for Al2O3:Mn4+[J].J.Phys.Chem.Solids, 1999, 60(3):359-361.
LAN Y W, SUN Z H, LU Z Z, et al..Synthesis, luminescence property, and application of a novel red-emitting BaLaZnTaO6:Mn4+ phosphor[J].Opt.Laser Technol., 2019, 119:105614.
WU X X, FANG W, FENG W L, et al..Electron paramagnetic resonance parameters of Mn4+ ion in h-BaTiO3 crystal from a two-mechanism model[J].Pramana, 2009, 72(3):569-575.
HUANG D Y, DANG P P, LIAN H Z, et al..Luminescence and energy-transfer properties in Bi3+/Mn4+-codoped Ba2GdNbO6 double-perovskite phosphors for white-light-emitting diodes[J].Inorg.Chem., 2019, 58(22):15507-15519.
SRIVASTAVA A M, BRIK M G.Ab initio and crystal field studies of the Mn4+-doped Ba2LaNbO6 double-perovskite[J].J.Lumin., 2012, 132(3):579-584.
QIN L, WEI D L, BI S, et al..Comparative study of Mn4+2Eg→4A2g luminescence in isostructural A2CaWO6(A=Ca, Sr, Ba) with double perovskite structure[J].Opt.Mater., 2019, 98:109496.
CAO R P, ZHANG F X, CAO C Y, et al..Synthesis and luminescence properties of CaAl2O4:Mn4+ phosphor[J].Opt.Mater., 2014, 38:53-56.
MURATA T, TANOUE T, IWASAKI M, et al..Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED[J].J.Lumin., 2005, 114(3-4):207-212.
BRIK M G, PAN Y X, LIU G K.Spectroscopic and crystal field analysis of absorption and photoluminescence properties of red phosphor CaAl12O19:Mn4+ modified by MgO[J].J.Alloys Compd., 2011, 509(5):1452-1456.
HUANG D Y, DANG P P, WEI Y, et al..A deep-red-emitting Bi3+/Mn4+-doped CaLi6La2Nb2O12 phosphor:luminescence and energy transfer properties[J].Mater.Res.Bull., 2020, 124:110743.
WANG B, LIN H, XU J, et al..CaMg2Al16O27:Mn4+-based red phosphor:a potential color converter for high-powered warm W-LED[J].ACS Appl.Mater.Interfaces, 2014, 6(24):22905-22913.
ZHANG Y L, HUANG Y D, LI M H, et al..Tuning the luminescence properties of Mn4+-activated CaYAlO4 phosphor by co-doping cations for indoor plant cultivation[J].J.Am.Ceram.Soc., 2020, 103(8):4373-4383.
BRIK M G, SRIVASTAVA A M.Electronic energy levels of the Mn4+ ion in the perovskite, CaZrO3〖KG*8〗[J].ECS J.Solid State Sci.Technol., 2013, 2(7):R148-R152.
SHI L, HAN Y J, WANG S, et al..Synthesis and luminescence properties of CaLaMgNbO6:Mn4+ red phosphor for UV-based w-LEDs[J].Mod.Phys.Lett.B, 2019, 33(34):1950426.
HUANG X Y, SUN Q, DEVAKUMAR B.Novel efficient deep-red-emitting Ca2LuTaO6:Mn4+ double-perovskite phosphors for plant growth LEDs[J].J.Lumin., 2020, 222:117177.
SHI L, HAN Y J, JI Z X, et al..Photoluminescence properties of novel far-red emission Ca3Gd2W2O12:Mn4+ phosphor[J].Russ.J.Phys.Chem.A, 2019, 93(11):2306-2313.
DING Y, GUO N, Lü X, et al..None-rare-earth activated Ca14Al10Zn6O35:Bi3+, Mn4+ phosphor involving dual luminescent centers for temperature sensing[J].J.Am.Ceram.Soc., 2019, 102(12):7436-7447.
ZHONG Y, GAI S J, XIA M, et al..Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35:Mn4+ based on chemical unit engineering[J].Chem.Eng.J., 2019, 374:381-391.
SRIVASTAVA A M, BEERS W W.Luminescence of Mn4+ in the distorted perovskite Gd2MgTiO6[J].J.Electrochem.Soc., 1996, 143(9):L203-L205.
SRIVASTAVA A M, BRIK M G.Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3[J].Opt.Mater., 2013, 35(8):1544-1548.
LUO H Y, LI X G, WANG X, et al..Highly thermal-sensitive robust LaTiSbO6:Mn4+ with a single-band emission and its topological architecture for single/dual-mode optical thermometry[J].Chem.Eng.J., 2020, 384:123272.
JI H P, UEDA J, BRIK M G, et al..Intense deep-red zero phonon line emission of Mn4+ in double perovskite La4Ti3O12[J].Phys.Chem.Chem.Phys., 2019, 21(45):25108-25117.
AOYAMA M, AMANO Y, INOUE K, et al..Synthesis and characterization of Mn-activated lithium aluminate red phosphors[J].J.Lumin., 2013, 136:411-414.
BEDYAL A K, KUNTI A K, MENON S G, et al..Red emitting non-rare earth doped LiMgBO3 phosphor for light emitting diodes[J].J.Alloys Compd., 2020, 830:154622.
SEKULIĆ M, RISTIĆ Z, MILIĆ EVIĆ B, et al..Li1.8Na0.2TiO3:Mn4+:the highly sensitive probe for the low-temperature lifetime-based luminescence thermometry[J].Opt.Commun., 2019, 452:342-346.
CAO Y R, FANG Y Z, ZHANG G H, et al..High quantum yield red-emission phosphor Li2Ge4O9:Mn4+ for WLEDs application[J].Opt.Mater., 2019, 98:109442.
HASEGAWA T, NISHIWAKI Y, FUJISHIRO F, et al..Quantitative determination of the effective Mn4+ concentration in a Li2TiO3:Mn4+ phosphor and its effect on the photoluminescence efficiency of deep red emission[J].ACS Omega, 2019, 4(22):19856-19862.
WANG X C, ZHOU X P, CAO Y X, et al..Insight into a novel rare-earth-free red-emitting phosphor Li3Mg2NbO6:Mn4+:structure and luminescence properties[J].J.Am.Ceram.Soc., 2019, 102(11):6724-6731.
WANG S Y, SUN Q, LIANG J, et al..Preparation and photoluminescence properties of novel Mn4+ doped Li3Mg2TaO6 red-emitting phosphors[J].Inorg.Chem.Commun., 2020, 116:107903.
HAN Y J, WANG S, LIU H, et al..A novel Al3+ modified Li6CaLa2Sb2O12:Mn4+ far -red-emitting phosphor with garnet structure for plant cultivation[J].J.Lumin., 2020, 221:117031.
JI H P, HOU X H, MOLOKEEV M S, et al..Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm[J].Dalton Trans., 2020, 49(17):5711-5721.
WU X X, FANG W, FENG W L, et al..Study of EPR parameters and defect structure for two tetragonal impurity centers in MgO:Cr3+ and MgO:Mn4+ crystals[J].Appl.Magn.Reson., 2009, 35(4):503-510.
MEDIĆ M M, BRIK M G, DRAÍĆ G, et al..Deep-red emitting Mn4+ doped Mg2TiO4 nanoparticles[J].J.Phys.Chem.C, 2015, 119(1):724-730.
LI K, VAN DEUN R.Insight into emission-tuning and luminescence thermal quenching investigations in NaLa1-xGdxCa4W2O12:Mn4+ phosphors via the ionic couple substitution of Na++Ln3+ (Ln=La, Gd) for 2Ca2+ in Ca6W2O12:Mn4+ for plant-cultivation LED applications[J].Dalton Trans., 2019, 48(42):15936-15941.
SHI L, HAN Y J, WANG S, et al..NaLa2SbO6:Mn4+ far-red phosphor:synthesis, luminescence properties and emission enhancement by Al3+ ions[J].J.Lumin., 2020, 219:116865.
WU X X, ZHENG W C, FANG W.Theoretical investigations of the EPR parameters for Cr3+ and Mn4+ ions in PbTiO3 crystals[J].Spectrochim.Acta A, 2008, 69(2):498-502.
ZHONG Y, ZHOU N, XIA M, et al..Synthesis and photoluminescence properties of novel red-emitting phosphor SrAl3BO7:Mn4+ with enhanced emission by Mg2+/Zn2+/Ca2+ incorporation for plant growth LED lighting[J].Ceram.Int., 2019, 45(17):23528-23539.
MENG L L, LIANG L F, WEN Y X.Deep red phosphors SrMgAl10O17:Mn4+, M(M=Li+, Na+, K+, Cl-) for warm white light emitting diodes[J].J.Mater.Sci.:Mater.Electron., 2014, 25(6):2676-2681.
BRYKNAR Z.Application of spectroscopic probes in study of ferroelectrics[J].Ferroelectrics, 2004, 298(1):43-48.
SHI L, WANG S, HAN Y J, et al..Effects of Ti4+-and W6+-substitution on photoluminescence properties of Sr2GdSbO6:Mn4+ phosphor for plant cultivation[J].J.Alloys Compd., 2020:829:154475.
SHI L, WANG S, HAN Y J, et al..Sr2LaSbO6:Mn4+ far-red phosphor for plant cultivation:synthesis, luminescence properties and emission enhancement by Al3+ ions[J].J.Lumin., 2020, 221:117091.
SHI L, HAN Y J, JI Z X, et al..Effects of Al3+-substitution on photoluminescence properties of Sr2YNbO6:Mn4+ far-red phosphor for plant cultivation[J].J.Lumin., 2020, 218:116828.
XU Y D, WANG D, WANG L, et al..Preparation and luminescent properties of a new red phosphor (Sr4Al14O25:Mn4+) for white LEDs[J].J.Alloys Compd., 2013, 550:226-230.
PENG M Y, YIN X W, TANNER P A, et al..Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25:Mn4+ for warm WLEDs[J].Chem.Mater., 2015, 27(8):2938-2945.
CHEN L, DENG X R, ZHAO E L, et al..The effect of electron cloud expansion on the red luminescence of Sr4Al14O25:Mn4+ revealed by calculation of the Racah parameters[J].J.Alloys Compd., 2014, 613:312-316.
HAN Y J, WANG S, LIU H, et al..Mn4+-doped tetratungstate Sr9Gd2W4O24 far-red phosphor:synthesis, luminescence properties, and potential applications in indoor plant cultivation[J].J.Lumin., 2020, 220:117027.
WU X X, FENG W L, ZHENG W C.Investigations of EPR parameters for Cr3+ and Mn4+ ions in anatase (TiO2) crystals[J].Phys.Stat.Sol.(b), 2007, 244(9):3347-3351.
BRIK M G, SILDOS I, BERKOWSKI M, et al..Spectroscopic and crystal field studies of YAlO3 single crystals doped with Mn ions[J].J.Phys.:Condens.Matter, 2009, 21(2):025404-1-5.
BRIK M G, SRIVASTAVA A M, AVRAM N M.Comparative analysis of crystal field effects and optical spectroscopy of six-coordinated Mn4+ ion in the Y2Ti2O7 and Y2Sn2O7 pyrochlores[J].Opt.Mater., 2011, 33(11):1671-1676.
DONG X L, PAN Y X, LI D, et al..A novel red phosphor of Mn4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications[J].CrystEngComm, 2018, 20(37):5641-5646.
LIANG Z B, YANG Z F, TANG H J, et al..Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4:Mn4+ for LED backlighting[J].Opt.Mater., 2019, 90:89-94.
HE S G, XU F F, HAN T T, et al..A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs[J].Chem.Eng.J., 2020, 393:123657.
MING H, ZHANG J F, LIU L L, et al..A novel Cs2NbOF5:Mn4+ oxyfluoride red phosphor for light-emitting diode devices[J].Dalton Trans., 2018, 47(45):16048-16056.
HU M Q, LIU Z F, XIA Y J, et al..The photoluminescence adjustment of red phosphors ANaWO2F4:Mn4+(A=Li, Na, K) by suitable tolerance factor designing[J].J.Mater.Sci.:Mater.Electron., 2020, 31(6):4535-4541.
LIU Y, LI H, TANG S, et al..A red-emitting phosphor K2[MoO2F4]·H2O:Mn4+ for warm white light-emitting diodes with a high color rendering index[J].Mater.Res.Bull., 2020, 122:110675.
JANSEN T, FUNKE L M, GOROBEZ J, et al..Red-emitting K3HF2WO2F4:Mn4+ for application in warm-white phosphor-converted LEDs-optical properties and magnetic resonance characterization[J].Dalton Trans., 2019, 48(16):5361-5371.
STOLL C, SEIBALD M, BAUMANN D, et al..HF-free solid-state synthesis of the oxyfluoride phosphor K3MoOF7:Mn4+[J].Eur.J.Inorg.Chem., 2019, 2019(29):3383-3388.
STOLL C, HEYMANN G, SEIBALD M, et al..K3WOF7:Mn4+-a red oxyfluoride phosphor[J].J.Fluor.Chem., 2019, 226:109356.
KHAIDUKOV N, BREKHOVSKIKH M, TOCI G, et al..Time-and temperature-resolved luminescence spectroscopy of LiAl4O6F:Mn red phosphors[J].J.Lumin., 2019, 216:116754.
SHAO Q Y, LIN H N, HU J L, et al..Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors[J].J.Alloys Compd., 2013, 552:370-375.
CAI P Q, WANG X F, SEO H J.Excitation power dependent optical temperature behaviors in Mn4+ doped oxyfluoride Na2WO2F4[J].Phys.Chem.Chem.Phys., 2018, 20(3):2028-2035.
WANG Z L, YANG Z Y, YANG Z F, et al..Red phosphor Rb2NbOF5:Mn4+ for warm white light-emitting diodes with a high color-rendering index[J].Inorg.Chem., 2019, 58(1) 456-461.
KATO H, TAKEDA Y, KOBAYASHI M, et al..Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn4+[J].Front.Chem., 2018, 6:467.
MA C G, WANG Y, LIU D X, et al..Origin of the β1 parameter describing the nephelauxetic effect in transition metal ions with spin-forbidden emissions[J].J.Lumin., 2018, 197:142-146.
BRIK M G, BEERS W W, COHEN W, et al..On the Mn4+ R-line emission intensity and its tunability in solids[J].Opt.Mater., 2019, 91:338-343.
SRIVASTAVA A M, BRIK M G, COMANZO H A, et al..Spectroscopy of Mn4+ in double perovskites, La2LiSbO6 and La2MgTiO6:deep red photon generators for agriculture LEDs[J].ECS J.Sol.State Sci.Technol., 2018, 7(1):R3158-R3162.
LIU D X, MA C G, HU P W, et al..First-principles and crystal-field calculations of the electronic and optical properties of two novel red phosphors Rb2HfF6:Mn4+ and Cs2HfF6:Mn4+[J].J.Am.Ceram.Soc., 2018, 101(6):2368-2375.
WANG Z L, YANG Z Y, WANG N, et al..Single-crystal red phosphors:enhanced optical efficiency and improved chemical stability for wLEDs[J].Adv.Opt.Mater., 2020, 8(6):1901512.
0
浏览量
603
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构