浏览全部资源
扫码关注微信
1.重庆邮电大学 理学院&“重庆邮电大学-伦敦布鲁内尔大学”交叉创新研究院, 重庆 400065
2.塔尔图大学 物理所, 爱沙尼亚 塔尔图 50411
3.琴斯托霍瓦师范大学 物理所, 波兰 琴斯托霍瓦 42200
4.戴恩特里公司通用电气顾问部, 美国 克利夫兰 44110
5.东欧国立大学 固态物理系, 乌克兰 卢茨克 43025
[ "BRIK Mikhail G (1969-), received his PhD from Kuban State University(Russia) in 1995 and his DSc(habilitation) from the Institute of Physics, Polish Academy of Sciences(Poland) in 2012. Since 2007 he is a professor at the Institute of Physics, University of Tartu, Estonia. Before that, he worked at Kyoto University(Japan) from 2003 to 2007, Weizmann Institute of Science(Israel) in 2002, Asmara University(Eritrea) from 2000 to 2001, and Kuban State University from 1995 to 2000. He is also a distinguished visiting professor at Chongqing University of Posts and Telecommunications(China) and Professor at Jan Długosz University(Poland). Since 2015 he serves as one of the editors ofOptical Materials(Elsevier). Professor Brik's scientific interests cover theoretical spectroscopy of transition metal and rare earth ions in optical materials, crystal field theory, and ab initio calculations of the physical properties of pure and doped functional compounds. He is a coeditor of two books and author of 12 book chapters and about 410 papers in international journals. According to Google Scholar(June 2020), he has more than 8 500 citations with H index 45. He received the Dragomir Hurmuzescu Award of Romanian Academy in 2006 and the State Prize of the Republic of Estonia in the field of exact sciences in 2013. In 2018 he received the state professor title from the President of Poland. E-mail:mikhail.brik@ut.ee" ]
[ "MA Chong-geng (1980-), received his PhD from University of Science and Technology of China in 2008. He spent three years(2010-2013) as a post-doctor in University of Tartu with the financial support of European Social Fund. He was also a visiting professor at University of Verona in 2017. His area of scientific interests covers the first-principles and crystal-field design of luminescent materials. He has published one book and more than 80 papers in international journals, which attracted more than 1 600 citations(H index=21). Currently he is a full professor and the director of CQUPT-BUL Innovation Institute at Chongqing University of Posts and Telecommunications. E-mail:macg@cqupt.edu.cn" ]
[ "SRIVASTAVA Alok M (1960-), received his PhD from in 1986 from Polytechnic University of New York, Brooklyn, New York. Dr. Srivastava began his industrial career at General Electric's (GE) Global Research Center in Niskayuna, New York, in 1989 at GE GRC he established the phosphor laboratory where he laid the groundwork for the design and development of luminescent materials. Dr. Srivastava's research describes the relationship between the synthesis, crystal structure and optical properties of luminescent ions in solids. Dr. Srivastava holds a total of 141 U.S. patents and more than 100 peer reviewed publications. In 2015 he was appointed the Editor-in-Chief of Journal of Optical Materials(Elsevier). For his pioneering research in oxide quantum splitting phosphors he was awarded the First Centennial Outstanding Achievement Award of the Luminescence and Display Materials Division of The Electrochemical Society(2004). He has served as the Chairman of the Luminescence and Display Materials group of The Electrochemical Society. In 2019, Dr. Srivastava was elected Fellow of The Electrochemical Society. Currently, Dr. Srivastava has a technical consulting firm that is based on his more than 35 years of experience and broad technical knowledge in the area of solid-state luminescence. He leverages his expertise to assist industrial and academic scientists in the fundamental understanding, design and synthesis of luminescent products. E-mail:srivastaam@outlook.com" ]
[ "PIASECKI Michal (1957-), received his MSc in Physics(honors degree) in Institute of Physics, Nicolaus Copernicus University Torun(present A.Jablonski Institute), Ph.D. from Institute of Low Temperature and Structural Research Polish Academy of Sciences in Wroclaw(Poland) and habilitation in Zielona Gora University(Poland). Now he is working as a professor and Head of Department of Theoretical Physics of Jan Długosz University(Poland) and Lesya Ukrainka Eastern European National University(Ukraine). His research interests cover phase transitions, ferroelectricity, thermoelectricity, luminescence and non-linear optics. He conducted several EU projects utilizing ultra-UV(synchrotron) spectroscopic ellipsometry for investigations of novel photonic materials and bilateral research projects between Poland and France, Portugal, etc as partner countries. He has more than 170 publications in SCI journals, H-index=22, more than 1 900 citations. He has several awards including those from Polish Academy of Sciences -2 times; Polish Ministry of Sciences and Higher Education; Rector of Jan Długosz University. He was a visiting professor in University of Reims Champagne-Ardenne(France) and Vellore Institute of Technology, India. E-mail:m.piasecki@ujd.edu.pl" ]
收稿日期:2020-07-03,
录用日期:2020-7-12,
纸质出版日期:2020-09
移动端阅览
BRIK Mikhail G, 马崇庚, SRIVASTAVA Alok M, 等. 用于固态照明的Mn4+离子光谱学[J]. 发光学报, 2020,41(9):1011-1029.
BRIK Mikhail G, Chong-geng MA, SRIVASTAVA Alok M, et al. Mn4+ Ions for Solid State Lighting[J]. Chinese journal of luminescence, 2020, 41(9): 1011-1029.
BRIK Mikhail G, 马崇庚, SRIVASTAVA Alok M, 等. 用于固态照明的Mn4+离子光谱学[J]. 发光学报, 2020,41(9):1011-1029. DOI: 10.37188/fgxb20204109.1011.
BRIK Mikhail G, Chong-geng MA, SRIVASTAVA Alok M, et al. Mn4+ Ions for Solid State Lighting[J]. Chinese journal of luminescence, 2020, 41(9): 1011-1029. DOI: 10.37188/fgxb20204109.1011.
Mn
4+
离子激活的荧光粉在固态照明领域作为红光发射的热点载体正日益受到关注。我们针对当前研究热度撰写了Mn
4+
离子光谱学的回顾,并在回顾中聚焦了许多对红色荧光粉商业研制有价值的重要基础研究点。这些研究点涵盖了如何理解自由和晶场状态下Mn
4+
离子的能级结构以及Mn
4+
发射波长对基质的依赖关系。此外,我们就如何实验调控Mn
4+
离子掺杂型荧光粉的发射波长和发光强度给出了许多实际可行的建议。更为重要的是,我们收集并讨论了100多种荧光粉基质中Mn
4+
离子光谱学参数,对它们的理解将会为未来Mn
4+
掺杂型红色荧光粉的实验开发奠定基础。
Phosphors activated with Mn
4+
ion are gaining prominence in the field of solid-state lighting as generators of red photon. In the present review
we focus on several important points that are fundamentally important to produce a commercially useful phosphor. This includes an understanding of the Mn
4+
energy levels in the free state and in the crystal fields and of the host dependent variations in the Mn
4+
emission wavelength. Additionally
we formulate several practical recommendations on how to tune the emission wavelength and emission intensity of Mn
4+
-doped phosphors. The main spectroscopic parameters of the Mn
4+
ion in more than 100 phosphor materials are collected and discussed.
T JÜSTEL , H NIKOL , C RONDA . New developments in the field of luminescent materials for lighting and displays . Angew.Chem.Int.Ed. , 1998 . 37 ( 22 ): 3085 - 3103 .
HÖPPE H A.Recent developments in the field of inorganic phosphors[J].Angew.Chem.Int.Ed., 2009, 48(20):3572-3582.
YE S, XIAO F, PAN Y X, et al ..Phosphors in phosphor-converted white light-emitting diodes:recent advances in materials, techniques and properties[J] .Mater.Sci.Eng.R Rep., 2010, 71(1):1-34.
LIN C C, LIU R S.Advances in phosphors for light-emitting diodes[J].J.Phys.Chem.Lett., 2011, 2(11):1268-1277.
SMET P F, PARMENTIER A B, POELMAN D.Selecting conversion phosphors for white light-emitting diodes[J].J.Electrochem.Soc., 2011, 158(6):R37-R54.
XIA Z G, LIU R S.Tunable blue-green color emission and energy transfer of Ca 2 Al 3 O 6 F:Ce 3+ , Tb 3+ phosphors for near-UV white LEDs[J].J.Phys.Chem.C, 2012, 116(29):15604-15609.
BRIK M G, SRIVASTAVA A M.On the optical properties of the Mn 4+ ion in solids[J].J.Lumin., 2013, 133:69-72.
SHANG M M, LI C X, LIN J.How to produce white light in a single-phase host?[J].Chem.Soc.Rev., 2014, 43(5) 1372-1386.
BÜNZLI J C G.On the design of highly luminescent lanthanide complexes[J].Chem.Soc.Rev., 2015, 293-294:19-47.
LI J H, YAN J, WEN D W, et al ..Advanced red phosphors for white light-emitting diodes[J].J.Mater.Chem.C, 2016, 4(37):8611-8623.
LIN C C, MEIJERINK A, LIU R S.Critical red components for next-generation white LEDs[J].J.Phys.Chem.Lett., 2016, 7(3):495-503.
XIA Z G, MEIJERINK A.Ce 3+ -doped garnet phosphors:composition modification, luminescence properties and applications[J].Chem.Soc.Rev., 2017, 46(1):275-299.
LIU R S. Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications [M].Berlin, Heidelberg:Springer, 2017.
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al ..Mn 2+ and Mn 4+ red phosphors:synthesis, luminescence and applications in WLEDs.A review[J].J.Mater.Chem.C, 2018, 6(11):2652-2671.
BRIK M G, MA C G. Theoretical Spectroscopy of Transition Metal and Rare Earth Ions:From Free State to Crystal Field [M].Singapore:Jenny Stanford Publishing, 2020.
AVRAM N M, BRIK M G. Optical Properties of 3d-ions in Crystals:Spectroscopy and Crystal Field Analysis [M].Beijing:Tsinghua University Press, 2013.
BRIK M G, SRIVASTAVA A M.Critical review-a review of the electronic structure and optical properties of ions with d 3 electron configuration (V 2+ , Cr 3+ , Mn 4+ , Fe 5+ ) and main related misconceptions[J].ECS J.Sol.State Sci.Technol., 2018, 7(1):R3079-R3085.
MORRISON C A. Crystal Fields for Transition-Metal Ions in Laser Host Materials [M].Berlin, Heidelberg:Springer-Verlag, 1992.
HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids [M].Oxford:Clarendon Press, 1989.
NAKAMURA S, MUKAI T, SENOH M.Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J].Appl.Phys.Lett., 1994, 64(13):1687-1689.
NAKAMURA S, SENOH M, NAGAHAMA S, et al ..InGaN-based multi-quantum-well-structure laser diodes[J].Jpn.J.Appl.Phys., 1996, 35(1B):L74-L76.
SETLUR A A, RADKOV E V, HENDERSON C S, et al ..Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors[J].Chem.Mater., 2010, 22(13):4076-4082.
SIJBOM H F, VERSTRAETE R, JOOS J J, et al ..K 2 SiF 6 :Mn 4+ as a red phosphor for displays and warm-white LEDs:a review of properties and perspectives[J].Opt.Mater.Exp., 2017, 7(9):3332-3365.
BEERS W W, SMITH D, COHEN W E, et al ..Temperature dependence(13-600 K) of Mn 4+ lifetime in commercial Mg 28 Ge 7.55 O 32 F 15.04 and K 2 SiF 6 phosphors[J].Opt.Mater., 2018, 84:614-617.
RADKOV E V, GRIGOROV L S, SETLUR A A, et al ..Red line emitting phosphor materials for use in LED applications: US, 7497973[P].2009-03-03.
RADKOV E V, SETLUR A A, SRIVASTAVA A M, et al ..Red line emitting phosphors for use in led applications: US, 7648649[P].2010-01-19.
GARCIA-SANTAMARIA F, MURPHY J E, SETLUR A A, et al ..Concentration quenching in K 2 SiF 6 :Mn 4+ phosphors[J].ECS J.Solid State Sci.Technol., 2018, 7(1):R3030-R3033.
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M.Influence of covalency on the Mn 4+2 E g → 4 A 2g emission energy in crystals[J].ECS J.Solid State Sci.Technol., 2015, 4(3):R39-R43.
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al ..Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect[J].ECS J.Solid State Sci.Technol., 2016, 5(1):R3067-R3077.
ADACHI S.Review-Tanabe-Sugano energy-level diagram and racah parameters in Mn 4+ -activated red and deep red-emitting phosphors[J].ECS J.Solid State Sci.Technol., 2019, 8(12):R183-R196.
SEKIGUCHI D, ADACHI S.Synthesis and photoluminescence spectroscopy of BaGeF 6 :Mn 4+ red phosphor[J].Opt.Mater., 2015, 42:417-422.
SEKIGUCHI D, NARA J, ADACHI S.Photoluminescence and raman scattering spectroscopies of BaSiF 6 :Mn 4+ red phosphor[J].J.Appl.Phys., 2013, 113(18):183516-1-6.
XI L Q, PAN Y X.Tailored photoluminescence properties of a red phosphor BaSnF 6 :Mn 4+ synthesized from Sn metal at room temperature and its formation mechanism[J].Mater.Res.Bull., 2017, 86:57-62.
SEKIGUCHI D, ADACHI S.Synthesis and optical properties of BaTiF 6 :Mn 4+ red phosphor[J].ECS J.Solid State Sci.Technol., 2014, 3(4):R60-R64.
DENG T T, SONG E H, ZHOU Y Y, et al ..Tailoring photoluminescence stability in double perovskite red phosphors A 2 B AlF 6 :Mn 4+ ( A =Rb, Cs; B =K, Rb) via neighboring-cation modulation[J].J.Mater.Chem.C, 2017, 5(47):12422-12429.
BARANDIARÁN Z, SEIJO L.Alternative configuration interaction expansions for transition metal ions with intermediate oxidation states in crystals:the structure and absorption spectrum of Cs 2 GeF 6 :Mn 4+ [J].J.Chem.Phys., 2001, 115(15):7061-7065.
SENDEN T, VAN HARTEN E J, MEIJERINK A.Synthesis and narrow red luminescence of Cs 2 HfF 6 :Mn 4+ , a new phosphor for warm white LEDs[J].J.Lumin., 2018, 194:131-138.
ZHANG J F, LIU L L, HE S G, et al ..Cs 2 MnF 6 red phosphor with ultrahigh absorption efficiency[J].Inorg.Chem., 2019, 58(22):15207-15215.
ZHOU Y Y, SONG E H, BRIK M G, et al ..Non-equivalent Mn 4+ doping into A 2 NaScF 6 ( A =K, Rb, Cs) hosts toward short fluorescence lifetime for backlight display application[J].J.Mater.Chem.C, 2019, 7(30):9203-9210.
XU Y K, ADACHI S.Properties of Mn 4+ -activated hexafluorotitanate phosphors[J].J.Electrochem.Soc., 2011, 158(3):J58-J65.
ARAI Y, ADACHI S.Optical properties of Mn 4+ -activated Na 2 SnF 6 and Cs 2 SnF 6 red phosphors[J].J.Lumin., 2011, 131(12):2652-2660.
ZHOU Q, TAN H Y, ZHOY Y Y, et al ..Optical performance of Mn 4+ in a new hexa-coordinated fluorozirconate complex of Cs 2 ZrF 6 [J].J.Mater.Chem.C, 2016, 4(31):7443-7448.
MING H, ZHANG J F, LIU L L, et al ..Luminescent properties of a Cs 3 AlF 6 :Mn 4+ red phosphor for warm white light-emitting diodes[J].ECS J.Sol.State Sci.Technol., 2018, 7(9):R149-R155.
KUMADA N, YANAGIDA S, TAKEI T, et al ..Hydrothermal synthesis and crystal structure of new red phosphors, KNa M F 7 :Mn 4+ ( M :Nb, Ta)[J].Mater.Res.Bull., 2019, 115:170-175.
DENG T T, SONG E H, SU J, et al ..Stable narrowband red emission in fluorotellurate KTeF 5 :Mn 4+ via Mn 4+ noncentral-site occupation[J].J.Mater.Chem.C, 2018, 6(16):4418-4426.
HU T, LIN H, LIN F L, et al ..Narrow-band red-emitting KZnF 3 :Mn 4+ fluoroperovskites:insights into electronic/vibronic transition and thermal quenching behavior[J].J.Mater.Chem.C, 2018, 6(40) 10845-10854.
ADACHI S, TAKAHASHI T.Photoluminescent properties of K 2 GeF 6 :Mn 4+ red phosphor synthesized from aqueous HF/KMnO 4 solution[J].J.Appl.Phys., 2009, 106(1):013516-1-6.
TAKAHASHI T, ADACHI S.Mn 4+ -activated red photoluminescence in K 2 SiF 6 phosphor[J].J.Electrochem.Soc., 2008, 155(12):E 183-E188.
ZHU Y W, YUAN S, LIN H, et al ..Optimizing and adjusting the photoluminescence of Mn 4+ -doped fluoride phosphors via forming composite particles[J].Dalton Trans., 2019, 48(2):711-717.
ZHU Y W, YU J B, LIU Y, et al ..Photoluminescence properties of a novel red fluoride K 2 LiGaF 6 :Mn 4+ nanophosphor[J].RSC Adv., 2017, 7(49):30588-30593.
KASA R, ARAI Y, TAKAHASHI T, et al ..Photoluminescent properties of cubic K 2 MnF 6 particles synthesized in metal immersed HF/KMnO 4 solutions[J].J.Appl.Phys., 2010, 108(11):113503-1-6.
ZHU Y W, CAO L Y, BRIK M G, et al ..Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K 2 NaAlF 6 :Mn 4+ [J].J.Mater.Chem.C, 2017, 5(26):6420-6426.
JIANG C Y, BRIK M G, LI L H, et al ..The electronic and optical properties of a narrow-band red-emitting nanophosphor K 2 NaGaF 6 :Mn 4+ for warm white light-emitting diodes[J].J.Mater.Chem.C, 2018, 6(12):3016-3025.
MING H, LIU L L, HE S G, et al ..An ultra-high yield of spherical K 2 NaScF 6 :Mn 4+ red phosphor and its application in ultra-wide color gamut liquid crystal displays[J].J.Mater.Chem.C, 2019, 7(24):7237-7248.
MING H, ZHANG J F, LIU S F, et al ..A green synthetic route to K 2 NbF 7 :Mn 4+ red phosphor for the application in warm white LED devices[J].Opt.Mater., 2018, 86:352-359.
WEI L L, LIN C C, FANG M H, et al ..A low-temperature co-precipitation approach to synthesize fluoride phosphors K 2 M F 6 :Mn 4+ ( M =Ge, Si) for white LED applications[J].J.Mater.Chem.C, 2015, 3(8):1655-1660.
KASA R, ADACHI S.Red and deep red emissions from cubic K 2 SiF 6 :Mn 4+ and hexagonal K 2 MnF 6 synthesized in HF/KMnO 4 /KHF 2 /Si solutions[J].J.Electrochem.Soc., 2012, 159(4):J89-J95.
LIN H, HU T, HUANG Q M, et al ..Non-rare-earth K 2 X F 7 :Mn 4+ ( X =Ta, Nb):a highly-efficient narrow-band red phosphor enabling the application in wide-color-gamut LCD[J].Laser Photon.Rev., 2017, 11(6):1700148.
HUANG D C, ZHU H M, DENG Z H, et al ..Moisture-resistant Mn 4+ -doped core-shell-structured fluoride red phosphor exhibiting high luminous efficacy for warm white light-emitting diodes[J].Angew.Chem.Int.Ed., 2019, 58(12):3843-3847.
WANG T M, GAO Y, CHEN Z P, et al ..The formation of KF induced red-emitting phosphors K 2 TiF 6 ·BaF(HF 2 ):Mn 4+ by cation exchange[J].J.Lumin., 2017, 188:307-312.
DENG T T, SONG E H, ZHOU Y Y, et al ..Stable narrowband red phosphor K 3 GaF 6 :Mn 4+ derived from hydrous K 2 GaF 5 (H 2 O) and K 2 MnF 6 [J].J.Mater.Chem.C, 2017, 5(37):9588-9596.
MING H, LIU S F, LIU L L, et al ..Highly regular, uniform K 3 ScF 6 :Mn 4+ phosphors:facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices[J].ACS Appl.Mater.Interfaces, 2018, 10(23):19783-19795.
TAN H Y, RONG M Z, ZHOU Y Y, et al ..Luminescence behaviour of Mn 4+ ions in seven coordination environments of K 3 ZrF 7 [J].Dalton Trans., 2016, 45(23):9654-9660.
ZHU M M, PAN Y X, WU M M, et al ..Optimized photoluminescence properties of a novel red phosphor LiSrAlF 6 :Mn 4+ synthesized at room-temperature[J].J.Alloys Compd., 2019, 774:331-337.
ZHU M M, PAN Y X, WU M M, et al ..Synthesis and improved photoluminescence of a novel red phosphor LiSrGaF 6 :Mn 4+ for applications in warm WLEDs[J].Dalton Trans., 2018, 47(37):12944-12950.
ZHU M M, PAN Y X, CHEN X, et al ..Formation mechanism and optimized luminescence of Mn 4+ -doped unequal dual-alkaline hexafluorosilicate Li 0.5 Na 1.5 SiF 6 〖KG*9〗[J].J.Am.Ceram.Soc., 2018, 101(11):4983-4993.
ZHU M M, PAN Y X, XI L Q, et al ..Design, preparation, and optimized luminescence of a dodec-fluoride phosphor Li 3 Na 3 Al 2 F 12 :Mn 4+ for warm WLED applications[J].J.Mater.Chem.C, 2017, 5(39):10241-10250.
ZHU M M, PAN Y X, HUANG Y Q, et al ..Designed synthesis, morphology evolution and enhanced photoluminescence of a highly efficient red dodec-fluoride phosphor, Li 3 Na 3 Ga 2 F 12 :Mn 4+ , for warm WLEDs[J].J.Mater.Chem.C, 2018, 6(3):491-499.
HONG F, CHENG H M, SONG C, et al ..Novel polygonal structure Mn 4+ activated In 3+ -based Elpasolite-type hexafluorides red phosphor for warm white light-emitting diodes (WLEDs)[J].Dalton Trans., 2019, 48(4):1376-1385.
WANG Y J, Zhou Y Y, SONG E H.Ammonium salt conversion towards Mn 4+ doped (NH 4 ) 2 NaScF 6 narrow-band red-emitting phosphor[J].J.Alloys Compd., 2019, 811:151945.
BIN HUMAYOUN U, KWON S B, SAMI S K, et al ..(NH 4 ) 3 AlF 6 :Mn 4+ a novel red phosphor-facile synthesis, structure and luminescence characteristics[J].J.Alloys Compd., 2019, 776:594-598.
SETLUR A A, MURPHY J E, SISTA S P.Quenching in Mn 4+ -complex fluoride phosphors:initial relationships based upon NaKSiF 6 :Mn 4+ [J].ECS J.Solid State Sci.Technol., 2020, 9(1):016018-1-4.
FANG M H, WU W L, JIN Y, et al ..Control of luminescence by tuning of crystal symmetry and local structure in Mn 4+ -activated narrow band fluoride phosphors[J].Angew.Chem.Int.Ed., 2018, 57(7):1797-1801.
XU Y K, ADACHI S.Properties of Na 2 SiF 6 :Mn 4+ and Na 2 GeF 6 :Mn 4+ red phosphors synthesized by wet chemical etching[J].J.Appl.Phys., 2009, 105(1):013525-1-6.
LIU Y M, LI Y L, HUANG W J, et al ..Enhancement of zero phonon line for Na 2 TiF 6 :Mn 4+ , Li + phosphors induced by Li + [J].J.Mater.Sci.:Mater.Electron., 2019, 30(15):14646-14656.
SONG E H, WANG J Q, YE S, et al ..Room-temperature synthesis and warm-white LED applications of Mn 4+ ion doped fluoroaluminate red phosphor Na 3 AlF 6 :Mn 4+ [J].J.Mater.Chem.C, 2016, 4(13):2480-2487.
XU H P, HONG F, PANG G, et al ..Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na 3 GaF 6 :Mn 4+ red phosphor[J].J.Lumin., 2020, 219:116960.
FANG M H, YANG T H, LESNIEWSKI T, et al ..Hydrogen-containing Na 3 HTi 1- x Mn x F 8 narrow-band phosphor for light-emitting diodes[J].ACS Energy Lett., 2019, 4(2):527-533.
KIM M, PARK W B, LEE J W, et al ..Rb 3 SiF 7 :Mn 4+ and Rb 2 CsSiF 7 :Mn 4+ red-emitting phosphors with a faster decay rate[J].Chem.Mater., 2018, 30(19):6936-6944.
WU W L, FANG M H, ZHOU W L, et al ..High color rendering index of Rb 2 GeF 6 :Mn 4+ for light-emitting diodes[J].Chem.Mater., 2017, 29(3):935-939.
WANG L Y, SONG E H, ZHOU Y Y, et al ..An efficient and stable narrow band Mn 4+ -activated fluorotitanate red phosphor Rb 2 TiF 6 :Mn 4+ for warm white LED applications[J].J.Mater.Chem.C, 2018, 6(32):8670-8678.
JIANG C Y, BRIK M G, SRIVASTAVA A M, et al ..Significantly conquering moisture-induced luminescence quenching of red line-emitting phosphor Rb 2 SnF 6 :Mn 4+ through H 2 C 2 O 4 triggered particle surface reduction for blue converted warm white light-emitting diodes[J].J.Mater.Chem.C, 2019, 7(2) 247-255.
DENG T T, SONG E H, ZHOU Y Y, et al ..Implementation of high color quality, high luminous warm WLED using efficient and thermally stable Rb 3 AlF 6 :Mn 4+ as red color converter[J].J.Alloys Compd., 2019, 795:453-461.
JANG S, PARK J K, KIM M, et al ..New red-emitting phosphor Rb x K 3 - x SiF 7 :Mn 4+ ( x =0, 1, 2, 3):DFT predictions and synthesis[J].RSC Adv., 2019, 9:39589-39594.
LV L F, JIANG X N, PAN Y X, et al ..Luminescence properties and thermal stability of a red phosphor ZnSiF 6 ·6H 2 O:Mn 4+ synthesized by the one-step hydrothermal method[J].J.Lumin., 2014, 152:214-217.
HOSHINO R, ADACHI S.Optical spectroscopy of ZnSiF 6 ·6H 2 O:Mn 4+ red phosphor[J].J.Appl.Phys., 2013, 114(21):213502-1-6.
ZHONG J S, CHEN D Q, WANG X, et al ..Synthesis and optical performance of a new red-emitting ZnTiF 6 ·6H 2 O:Mn 4+ phosphor for warm white-light-emitting diodes[J].J.Alloys Compd., 2016, 662:232-239.
ZHENG W C.Investigations of the zero-field splitting and the first excited state splitting and their stress dependences for Al 2 O 3 :Mn 4+ [J].J.Phys.Chem.Solids, 1999, 60(3):359-361.
LAN Y W, SUN Z H, LU Z Z, et al ..Synthesis, luminescence property, and application of a novel red-emitting BaLaZnTaO 6 :Mn 4+ phosphor[J].Opt.Laser Technol., 2019, 119:105614.
WU X X, FANG W, FENG W L, et al ..Electron paramagnetic resonance parameters of Mn 4+ ion in h-BaTiO 3 crystal from a two-mechanism model[J].Pramana, 2009, 72(3):569-575.
HUANG D Y, DANG P P, LIAN H Z, et al ..Luminescence and energy-transfer properties in Bi 3+ /Mn 4+ -codoped Ba 2 GdNbO 6 double-perovskite phosphors for white-light-emitting diodes[J].Inorg.Chem., 2019, 58(22):15507-15519.
SRIVASTAVA A M, BRIK M G. Ab initio and crystal field studies of the Mn 4+ -doped Ba 2 LaNbO 6 double-perovskite[J].J.Lumin., 2012, 132(3):579-584.
QIN L, WEI D L, BI S, et al ..Comparative study of Mn 4+2 E g → 4 A 2g luminescence in isostructural A 2 CaWO 6 ( A =Ca, Sr, Ba) with double perovskite structure[J].Opt.Mater., 2019, 98:109496.
CAO R P, ZHANG F X, CAO C Y, et al ..Synthesis and luminescence properties of CaAl 2 O 4 :Mn 4+ phosphor[J].Opt.Mater., 2014, 38:53-56.
MURATA T, TANOUE T, IWASAKI M, et al ..Fluorescence properties of Mn 4+ in CaAl 12 O 19 compounds as red-emitting phosphor for white LED[J].J.Lumin., 2005, 114(3-4):207-212.
BRIK M G, PAN Y X, LIU G K.Spectroscopic and crystal field analysis of absorption and photoluminescence properties of red phosphor CaAl 12 O 19 :Mn 4+ modified by MgO[J].J.Alloys Compd., 2011, 509(5):1452-1456.
HUANG D Y, DANG P P, WEI Y, et al ..A deep-red-emitting Bi 3+ /Mn 4+ -doped CaLi 6 La 2 Nb 2 O 12 phosphor:luminescence and energy transfer properties[J].Mater.Res.Bull., 2020, 124:110743.
WANG B, LIN H, XU J, et al ..CaMg 2 Al 16 O 27 :Mn 4+ -based red phosphor:a potential color converter for high-powered warm W-LED[J].ACS Appl.Mater.Interfaces, 2014, 6(24):22905-22913.
ZHANG Y L, HUANG Y D, LI M H, et al ..Tuning the luminescence properties of Mn 4+ -activated CaYAlO 4 phosphor by co-doping cations for indoor plant cultivation[J].J.Am.Ceram.Soc., 2020, 103(8):4373-4383.
BRIK M G, SRIVASTAVA A M.Electronic energy levels of the Mn 4+ ion in the perovskite, CaZrO 3 〖KG*8〗[J].ECS J.Solid State Sci.Technol., 2013, 2(7):R148-R152.
SHI L, HAN Y J, WANG S, et al ..Synthesis and luminescence properties of CaLaMgNbO 6 :Mn 4+ red phosphor for UV-based w-LEDs[J].Mod.Phys.Lett.B, 2019, 33(34):1950426.
HUANG X Y, SUN Q, DEVAKUMAR B.Novel efficient deep-red-emitting Ca 2 LuTaO 6 :Mn 4+ double-perovskite phosphors for plant growth LEDs[J].J.Lumin., 2020, 222:117177.
SHI L, HAN Y J, JI Z X, et al ..Photoluminescence properties of novel far-red emission Ca 3 Gd 2 W 2 O 12 :Mn 4+ phosphor[J].Russ.J.Phys.Chem.A, 2019, 93(11):2306-2313.
DING Y, GUO N, Lü X, et al ..None-rare-earth activated Ca 14 Al 10 Zn 6 O 35 :Bi 3+ , Mn 4+ phosphor involving dual luminescent centers for temperature sensing[J].J.Am.Ceram.Soc., 2019, 102(12):7436-7447.
ZHONG Y, GAI S J, XIA M, et al ..Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca 14 Ga 10 Zn 6 O 35 :Mn 4+ based on chemical unit engineering[J].Chem.Eng.J., 2019, 374:381-391.
SRIVASTAVA A M, BEERS W W.Luminescence of Mn 4+ in the distorted perovskite Gd 2 MgTiO 6 [J].J.Electrochem.Soc., 1996, 143(9):L203-L205.
SRIVASTAVA A M, BRIK M G.Crystal field studies of the Mn 4+ energy levels in the perovskite, LaAlO 3 [J].Opt.Mater., 2013, 35(8):1544-1548.
LUO H Y, LI X G, WANG X, et al ..Highly thermal-sensitive robust LaTiSbO 6 :Mn 4+ with a single-band emission and its topological architecture for single/dual-mode optical thermometry[J] .Chem.Eng.J., 2020, 384:123272.
JI H P, UEDA J, BRIK M G, et al ..Intense deep-red zero phonon line emission of Mn 4+ in double perovskite La 4 Ti 3 O 12 [J].Phys.Chem.Chem.Phys., 2019, 21(45):25108-25117.
AOYAMA M, AMANO Y, INOUE K, et al ..Synthesis and characterization of Mn-activated lithium aluminate red phosphors[J].J.Lumin., 2013, 136:411-414.
BEDYAL A K, KUNTI A K, MENON S G, et al ..Red emitting non-rare earth doped LiMgBO 3 phosphor for light emitting diodes[J].J.Alloys Compd., 2020, 830:154622.
SEKULIĆ M, RISTIĆ Z, MILIĆ EVIĆ B, et al ..Li 1.8 Na 0.2 TiO 3 :Mn 4+ :the highly sensitive probe for the low-temperature lifetime-based luminescence thermometry[J].Opt.Commun., 2019, 452:342-346.
CAO Y R, FANG Y Z, ZHANG G H, et al ..High quantum yield red-emission phosphor Li 2 Ge 4 O 9 :Mn 4+ for WLEDs application[J].Opt.Mater., 2019, 98:109442.
HASEGAWA T, NISHIWAKI Y, FUJISHIRO F, et al ..Quantitative determination of the effective Mn 4+ concentration in a Li 2 TiO 3 :Mn 4+ phosphor and its effect on the photoluminescence efficiency of deep red emission[J].ACS Omega, 2019, 4(22):19856-19862.
WANG X C, ZHOU X P, CAO Y X, et al ..Insight into a novel rare-earth-free red-emitting phosphor Li 3 Mg 2 NbO 6 :Mn 4+ :structure and luminescence properties[J].J.Am.Ceram.Soc., 2019, 102(11):6724-6731.
WANG S Y, SUN Q, LIANG J, et al ..Preparation and photoluminescence properties of novel Mn 4+ doped Li 3 Mg 2 TaO 6 red-emitting phosphors[J].Inorg.Chem.Commun., 2020, 116:107903.
HAN Y J, WANG S, LIU H, et al ..A novel Al 3+ modified Li 6 CaLa 2 Sb 2 O 12 :Mn 4+ far -red-emitting phosphor with garnet structure for plant cultivation[J].J.Lumin., 2020, 221:117031.
JI H P, HOU X H, MOLOKEEV M S, et al ..Ultrabroadband red luminescence of Mn 4+ in MgAl 2 O 4 peaking at 651 nm[J].Dalton Trans., 2020, 49(17):5711-5721.
WU X X, FANG W, FENG W L, et al ..Study of EPR parameters and defect structure for two tetragonal impurity centers in MgO:Cr 3+ and MgO:Mn 4+ crystals[J].Appl.Magn.Reson., 2009, 35(4):503-510.
MEDIĆ M M, BRIK M G, DRAÍĆ G, et al ..Deep-red emitting Mn 4+ doped Mg 2 TiO 4 nanoparticles[J].J.Phys.Chem.C, 2015, 119(1):724-730.
LI K, VAN DEUN R.Insight into emission-tuning and luminescence thermal quenching investigations in NaLa 1- x Gd x Ca 4 W 2 O 12 :Mn 4+ phosphors via the ionic couple substitution of Na + + Ln 3+ ( Ln =La, Gd) for 2Ca 2+ in Ca 6 W 2 O 12 :Mn 4+ for plant-cultivation LED applications[J].Dalton Trans., 2019, 48(42):15936-15941.
SHI L, HAN Y J, WANG S, et al ..NaLa 2 SbO 6 :Mn 4+ far-red phosphor:synthesis, luminescence properties and emission enhancement by Al 3+ ions[J].J.Lumin., 2020, 219:116865.
WU X X, ZHENG W C, FANG W.Theoretical investigations of the EPR parameters for Cr 3+ and Mn 4+ ions in PbTiO 3 crystals[J].Spectrochim.Acta A, 2008, 69(2):498-502.
ZHONG Y, ZHOU N, XIA M, et al ..Synthesis and photoluminescence properties of novel red-emitting phosphor SrAl 3 BO 7 :Mn 4+ with enhanced emission by Mg 2+ /Zn 2+ /Ca 2+ incorporation for plant growth LED lighting[J].Ceram.Int., 2019, 45(17):23528-23539.
MENG L L, LIANG L F, WEN Y X.Deep red phosphors SrMgAl 10 O 17 :Mn 4+ , M ( M =Li + , Na + , K + , Cl - ) for warm white light emitting diodes[J].J.Mater.Sci.:Mater.Electron., 2014, 25(6):2676-2681.
BRYKNAR Z.Application of spectroscopic probes in study of ferroelectrics[J].Ferroelectrics, 2004, 298(1):43-48.
SHI L, WANG S, HAN Y J, et al ..Effects of Ti 4+ -and W 6+ -substitution on photoluminescence properties of Sr 2 GdSbO 6 :Mn 4+ phosphor for plant cultivation[J].J.Alloys Compd., 2020:829:154475.
SHI L, WANG S, HAN Y J, et al ..Sr 2 LaSbO 6 :Mn 4+ far-red phosphor for plant cultivation:synthesis, luminescence properties and emission enhancement by Al 3+ ions[J].J.Lumin., 2020, 221:117091.
SHI L, HAN Y J, JI Z X, et al ..Effects of Al 3+ -substitution on photoluminescence properties of Sr 2 YNbO 6 :Mn 4+ far-red phosphor for plant cultivation[J].J.Lumin., 2020, 218:116828.
XU Y D, WANG D, WANG L, et al ..Preparation and luminescent properties of a new red phosphor (Sr 4 Al 14 O 25 :Mn 4+ ) for white LEDs[J].J.Alloys Compd., 2013, 550:226-230.
PENG M Y, YIN X W, TANNER P A, et al ..Site occupancy preference, enhancement mechanism, and thermal resistance of Mn 4+ red luminescence in Sr 4 Al 14 O 25 :Mn 4+ for warm WLEDs[J].Chem.Mater., 2015, 27(8):2938-2945.
CHEN L, DENG X R, ZHAO E L, et al ..The effect of electron cloud expansion on the red luminescence of Sr 4 Al 14 O 25 :Mn 4+ revealed by calculation of the Racah parameters[J].J.Alloys Compd., 2014, 613:312-316.
HAN Y J, WANG S, LIU H, et al ..Mn 4+ -doped tetratungstate Sr 9 Gd 2 W 4 O 24 far-red phosphor:synthesis, luminescence properties, and potential applications in indoor plant cultivation[J].J.Lumin., 2020, 220:117027.
WU X X, FENG W L, ZHENG W C.Investigations of EPR parameters for Cr 3+ and Mn 4+ ions in anatase (TiO 2 ) crystals[J].Phys.Stat.Sol.(b), 2007, 244(9):3347-3351.
BRIK M G, SILDOS I, BERKOWSKI M, et al ..Spectroscopic and crystal field studies of YAlO 3 single crystals doped with Mn ions[J].J.Phys.:Condens.Matter, 2009, 21(2):025404-1-5.
BRIK M G, SRIVASTAVA A M, AVRAM N M.Comparative analysis of crystal field effects and optical spectroscopy of six-coordinated Mn 4+ ion in the Y 2 Ti 2 O 7 and Y 2 Sn 2 O 7 pyrochlores[J].Opt.Mater., 2011, 33(11):1671-1676.
DONG X L, PAN Y X, LI D, et al ..A novel red phosphor of Mn 4+ ion-doped oxyfluoroniobate BaNbOF 5 for warm WLED applications[J].CrystEngComm, 2018, 20(37):5641-5646.
LIANG Z B, YANG Z F, TANG H J, et al ..Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF 4 :Mn 4+ for LED backlighting[J].Opt.Mater., 2019, 90:89-94.
HE S G, XU F F, HAN T T, et al ..A Mn 4+ -doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs[J].Chem.Eng.J., 2020, 393:123657.
MING H, ZHANG J F, LIU L L, et al ..A novel Cs 2 NbOF 5 :Mn 4+ oxyfluoride red phosphor for light-emitting diode devices[J].Dalton Trans., 2018, 47(45):16048-16056.
HU M Q, LIU Z F, XIA Y J, et al ..The photoluminescence adjustment of red phosphors A NaWO 2 F 4 :Mn 4+ ( A =Li, Na, K) by suitable tolerance factor designing[J].J.Mater.Sci.:Mater.Electron., 2020, 31(6):4535-4541.
LIU Y, LI H, TANG S, et al ..A red-emitting phosphor K 2 [MoO 2 F 4 ]·H 2 O:Mn 4+ for warm white light-emitting diodes with a high color rendering index[J].Mater.Res.Bull., 2020, 122:110675.
JANSEN T, FUNKE L M, GOROBEZ J, et al ..Red-emitting K 3 HF 2 WO 2 F 4 :Mn 4+ for application in warm-white phosphor-converted LEDs-optical properties and magnetic resonance characterization[J].Dalton Trans., 2019, 48(16):5361-5371.
STOLL C, SEIBALD M, BAUMANN D, et al ..HF-free solid-state synthesis of the oxyfluoride phosphor K 3 MoOF 7 :Mn 4+ [J].Eur.J.Inorg.Chem., 2019, 2019(29):3383-3388.
STOLL C, HEYMANN G, SEIBALD M, et al ..K 3 WOF 7 :Mn 4+ -a red oxyfluoride phosphor[J].J.Fluor.Chem., 2019, 226:109356.
KHAIDUKOV N, BREKHOVSKIKH M, TOCI G, et al ..Time-and temperature-resolved luminescence spectroscopy of LiAl 4 O 6 F:Mn red phosphors[J].J.Lumin., 2019, 216:116754.
SHAO Q Y, LIN H N, HU J L, et al ..Temperature-dependent photoluminescence properties of deep-red emitting Mn 4+ -activated magnesium fluorogermanate phosphors[J].J.Alloys Compd., 2013, 552:370-375.
CAI P Q, WANG X F, SEO H J.Excitation power dependent optical temperature behaviors in Mn 4+ doped oxyfluoride Na 2 WO 2 F 4 [J].Phys.Chem.Chem.Phys., 2018, 20(3):2028-2035.
WANG Z L, YANG Z Y, YANG Z F, et al ..Red phosphor Rb 2 NbOF 5 :Mn 4+ for warm white light-emitting diodes with a high color-rendering index[J].Inorg.Chem., 2019, 58(1) 456-461.
KATO H, TAKEDA Y, KOBAYASHI M, et al ..Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn 4+ [J].Front.Chem., 2018, 6:467.
MA C G, WANG Y, LIU D X, et al ..Origin of the β 1 parameter describing the nephelauxetic effect in transition metal ions with spin-forbidden emissions[J].J.Lumin., 2018, 197:142-146.
BRIK M G, BEERS W W, COHEN W, et al ..On the Mn 4+ R-line emission intensity and its tunability in solids[J].Opt.Mater., 2019, 91:338-343.
SRIVASTAVA A M, BRIK M G, COMANZO H A, et al ..Spectroscopy of Mn 4+ in double perovskites, La 2 LiSbO 6 and La 2 MgTiO 6 :deep red photon generators for agriculture LEDs[J].ECS J.Sol.State Sci.Technol., 2018, 7(1):R3158-R3162.
LIU D X, MA C G, HU P W, et al ..First-principles and crystal-field calculations of the electronic and optical properties of two novel red phosphors Rb 2 HfF 6 :Mn 4+ and Cs 2 HfF 6 :Mn 4+ [J].J.Am.Ceram.Soc., 2018, 101(6):2368-2375.
WANG Z L, YANG Z Y, WANG N, et al ..Single-crystal red phosphors:enhanced optical efficiency and improved chemical stability for wLEDs[J].Adv.Opt.Mater., 2020, 8(6):1901512.
0
浏览量
779
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构