1.同济大学 物理科学与工程学院, 高等研究院, 上海 200092
2.江苏师范大学物理电子与工程学院 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
3.中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 201899
[ "刘坚(1990-),男,湖南岳阳人,博士研究生,2016年于同济大学获得硕士学位,主要从事激光晶体的研究。 E-mail: 1910102@tongji.edu.cn" ]
[ "徐军(1965-),男,江苏泰兴人,博士,特聘研究员,博士生导师,1996年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光晶体、蓝宝石晶体等的研究。" ]
扫 描 看 全 文
刘坚, 王无敌, 宋青松, 等. Tb3+离子掺杂CaF2晶体的生长和发光性能[J]. 发光学报, 2022,43(11):1750-1757.
LIU Jian, WANG Wu-di, SONG Qing-song, et al. Growth and Luminescence Properties of Tb3+ Ions Doped CaF2 Crystals[J]. Chinese Journal of Luminescence, 2022,43(11):1750-1757.
刘坚, 王无敌, 宋青松, 等. Tb3+离子掺杂CaF2晶体的生长和发光性能[J]. 发光学报, 2022,43(11):1750-1757. DOI: 10.37188/CJL.20220229.
LIU Jian, WANG Wu-di, SONG Qing-song, et al. Growth and Luminescence Properties of Tb3+ Ions Doped CaF2 Crystals[J]. Chinese Journal of Luminescence, 2022,43(11):1750-1757. DOI: 10.37188/CJL.20220229.
使用温梯法生长了10%Tb,,x,%Y∶CaF,2,(,x, = 0,3,5,10)系列晶体。通过X射线衍射分析了晶体结构,结果表明高浓度的稀土离子掺杂使得晶胞参数增大,但是仍然保持CaF,2,的萤石立方结构。采用吸收光谱、发射光谱及荧光衰减曲线等测试数据对其发光性能进行了研究。通过J⁃O理论计算,共掺Y,3+,离子后,光谱品质因子,Ω,4,/,Ω,6,由0.75增加到0.80。F‑L公式计算得到10%Tb∶CaF,2,绿光545 nm处和黄光583 nm处的发射截面分别为0.89×10,-21, cm,2,和0.082×10,-21, cm,2,,10%Tb,10%Y∶CaF,2,在绿光545 nm处和黄光583 nm处的发射截面分别为0.89×10,-21, cm,2,和0.077×10,-21, cm,2,。并且Tb,3+,离子,5,D,4,能级的荧光寿命都在5 ms以上,并不存在高浓度掺杂导致的荧光寿命降低现象,长荧光寿命意味着Tb,3+,离子绝佳的储能能力。实验结果表明,Tb∶CaF,2,及Tb,Y∶CaF,2,晶体是有极大潜力实现可见激光输出的激光增益介质。
A series of 10%Tb∶,x,%Y∶CaF,2,(,x, = 0, 3, 5, 10) crystals have been successfully grown by the temperature gradient technique(TGT). The crystal structure was analyzed by X-ray diffraction, and the results showed that the high concentration of rare earth ion doping increased the unit cell parameters, but still maintained the fluorite cubic structure of CaF,2,. The absorption spectra, fluorescence spectra, and fluorescence decay curves were measured and analyzed at room temperature. By co-doping Y,3+, ions, the spectral quality factor ,Ω,4,/,Ω,6 ,increased from 0.75 to 0.80. Using F-L formula, the emission cross sections of 10%Tb∶CaF,2 ,were calculated to be 0.89×10,-21, cm,2, and 0.082×10,-21, cm,2, for the 545 nm and 587 nm, respectively, and the emission cross sections of 10% Tb,10%Y∶CaF,2 ,were calculated to be 0.89×10,-21, cm,2, and 0.077×10,-21, cm,2, for the 545 nm and 587 nm. The fluorescence lifetime of ,5,D,4, level is more than 5 ms, and there is no fluorescence lifetime quenching phenomenon caused by high concentration doping. The long fluorescence lifetime means that Tb,3+ ,ion has excellent energy storage capacity. The experimental results show that Tb∶CaF,2, and Tb,Y∶CaF,2, crystals are gain mediums with great potential to realize visible laser output.
Tb∶CaF2可见激光光谱性能J-O 理论
Tb∶CaF2visible laserspectral propertiesJ-O theory
CAVALLI E, BOVERO E, BELLETTI A. Optical spectroscopy of CaMoO4∶Dy3+ single crystals [J]. J. Phys. Condens. Matter, 2002, 14(20): 5221-5228. doi: 10.1088/0953-8984/14/20/317http://dx.doi.org/10.1088/0953-8984/14/20/317
LI J, WANG J Y, CHENG X F, et al. Growth and optical properties of DyxY1-xAl3(BO3)4 crystal [J]. J. Cryst. Growth, 2003, 253(1-4): 286-289. doi: 10.1016/s0022-0248(03)01013-3http://dx.doi.org/10.1016/s0022-0248(03)01013-3
LIU W P, ZHANG Q L, SUN D L, et al. Crystal growth and spectral properties of Sm∶GGG crystal [J]. J. Cryst. Growth, 2011, 331(1): 83-86. doi: 10.1016/j.jcrysgro.2011.07.023http://dx.doi.org/10.1016/j.jcrysgro.2011.07.023
DI J Q, XU X D, XIA C T, et al. Crystal growth and optical properties of Sm∶CaNb2O6 single crystal [J]. J. Alloys Compd., 2012, 536: 20-25. doi: 10.1016/j.jallcom.2012.04.105http://dx.doi.org/10.1016/j.jallcom.2012.04.105
CHEN B J, SHEN L F, PUN E Y B, et al. Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery [J]. Opt. Express, 2012, 20(2): 879-889. doi: 10.1364/oe.20.000879http://dx.doi.org/10.1364/oe.20.000879
KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers [J]. Laser Photonics Rev., 2016, 10(4): 548-568. doi: 10.1002/lpor.201500290http://dx.doi.org/10.1002/lpor.201500290
CHEN H, UEHARA H, KAWASE H, et al. Efficient visible laser operation of Tb∶LiYF4 and LiTbF4 [J]. Opt. Express, 2020, 28(8): 10951-10959. doi: 10.1364/oe.385020http://dx.doi.org/10.1364/oe.385020
CASTELLANO-HERNÁNDEZ E, METZ P W, DEMESH M, et al. Efficient directly emitting high-power Tb3+∶LiLuF4 laser operating at 587.5 nm in the yellow range [J]. Opt. Lett., 2018, 43(19): 4791-4794. doi: 10.1364/ol.43.004791http://dx.doi.org/10.1364/ol.43.004791
METZ P W, MARZAHL D T, MAJID A, et al. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions [J]. Laser Photonics Rev., 2016, 10(2): 335-344. doi: 10.1002/lpor.201500274http://dx.doi.org/10.1002/lpor.201500274
METZ P W, MARZAHL D T, HUBER G, et al. Performance and wavelength tuning of green emitting terbium lasers [J]. Opt. Express, 2017, 25(5): 5716-5724. doi: 10.1364/oe.25.005716http://dx.doi.org/10.1364/oe.25.005716
YAO W C, LIU J, LI E H, et al. Tb, Y∶SrF2 crystal for efficient laser operation in the visible spectral region [J]. Opt. Lett., 2022, 47(4): 774-777. doi: 10.1364/ol.448898http://dx.doi.org/10.1364/ol.448898
MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+(RE=Y, La-Lu) in MF2(M=Ca, Sr, Ba) fluorites [J]. Mater. Res. Bull., 2020, 125: 110788-1-12.
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
LIU B, SHI J J, WANG Q G, et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb∶YAlO3 [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 200: 58-62. doi: 10.1016/j.saa.2018.04.006http://dx.doi.org/10.1016/j.saa.2018.04.006
KAMINSKII A A. Crystalline Lasers: Physical Processes and Operating Schemes [M]. Boca Raton: CRC Press, 1996.
SARDAR D K, NASH K L, YOW R M, et al. Absorption intensities and emission cross sections of Tb3+ (4f8) in TbAlO3 [J]. J. Appl. Phys., 2006, 100(8): 083108-1-5. doi: 10.1063/1.2358401http://dx.doi.org/10.1063/1.2358401
LOIKO P, MATEOS X, DUNINA E, et al. Judd-Ofelt modelling and stimulated-emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal [J]. J. Lumin., 2017, 190: 37-44. doi: 10.1016/j.jlumin.2017.05.031http://dx.doi.org/10.1016/j.jlumin.2017.05.031
COLAK S, ZWICKER W K. Transition rates of Tb3+ in TbP5O14, TbLiP4O12, and TbAl3(BO3)4: an evaluation for laser applications [J]. J. Appl. Phys., 1983, 54(5): 2156-2166. doi: 10.1063/1.332393http://dx.doi.org/10.1063/1.332393
SHI J J, LIU B, WANG Q G, et al. Crystal growth and spectral properties of Tb∶Lu2O3 [J]. Chin. Phys. B, 2018, 27(9): 097801-1-6. doi: 10.1088/1674-1056/27/9/097801http://dx.doi.org/10.1088/1674-1056/27/9/097801
CHEN H J, LOISEAU P, AKA G, et al. Optical spectroscopic investigation of Ba3Tb(PO4)3 single crystals for visible laser applications [J]. J. Alloys Compd., 2018, 740: 1133-1139. doi: 10.1016/j.jallcom.2017.12.081http://dx.doi.org/10.1016/j.jallcom.2017.12.081
KESAVULU C R, SILVA A C A, DOUSTI M R, et al. Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses [J]. J. Lumin., 2015, 165: 77-84. doi: 10.1016/j.jlumin.2015.04.012http://dx.doi.org/10.1016/j.jlumin.2015.04.012
JAMALAIAH B C, KUMAR J S, BABU A M, et al. Study on spectroscopic and fluorescence properties of Tb3+-doped LBTAF glasses [J]. Phys. B Condens. Matter, 2009, 404(14-15): 2020-2024. doi: 10.1016/j.physb.2009.03.037http://dx.doi.org/10.1016/j.physb.2009.03.037
SHAN F X, ZHANG G C, ZHANG X Y, et al. Growth and spectroscopic properties of Tb3+-doped Na3La9O3(BO3)8 crystal [J]. J. Cryst. Growth, 2015, 424: 1-4. doi: 10.1016/j.jcrysgro.2015.04.040http://dx.doi.org/10.1016/j.jcrysgro.2015.04.040
0
浏览量
76
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构